Fox Jean-Paul
Department of Research Methodology, Measurement and Data Analysis, Twente University, Enschede, The Netherlands.
Br J Math Stat Psychol. 2008 Nov;61(Pt 2):453-70. doi: 10.1348/000711007X226040. Epub 2007 Jul 4.
There is much empirical evidence that randomized response methods improve the cooperation of the respondents when asking sensitive questions. The traditional methods for analysing randomized response data are restricted to univariate data and only allow inferences at the group level due to the randomized response sampling design. Here, a novel beta-binomial model is proposed for analysing multivariate individual count data observed via a randomized response sampling design. This new model allows for the estimation of individual response probabilities (response rates) for multivariate randomized response data utilizing an empirical Bayes approach. A common beta prior specifies that individuals in a group are tied together and the beta prior parameters are allowed to be cluster-dependent. A Bayes factor is proposed to test for group differences in response rates. An analysis of a cheating study, where 10 items measure cheating or academic dishonesty, is used to illustrate application of the proposed model.
有大量实证证据表明,在询问敏感问题时,随机化回答方法能提高受访者的合作度。传统的分析随机化回答数据的方法仅限于单变量数据,并且由于随机化回答抽样设计,仅允许在群体层面进行推断。在此,提出了一种新颖的贝塔 - 二项式模型,用于分析通过随机化回答抽样设计观测到的多变量个体计数数据。这种新模型允许利用经验贝叶斯方法估计多变量随机化回答数据的个体回答概率(回答率)。一个常见的贝塔先验规定,一个群体中的个体是相互关联的,并且贝塔先验参数允许依赖于聚类。提出了一个贝叶斯因子来检验回答率的群体差异。对一项作弊研究的分析(其中10个项目衡量作弊或学术不诚实)用于说明所提出模型的应用。