Bicek Andrew D, Tüzel Erkan, Kroll Daniel M, Odde David J
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA.
Methods Cell Biol. 2007;83:237-68. doi: 10.1016/S0091-679X(07)83010-X.
The microtubule cytoskeleton in living cells generate and resist mechanical forces to mediate fundamental cell processes, including cell division and migration. Recent advances in digital fluorescence microscopy have enabled the direct observation of bending of individual microtubules in living cells, which has enabled quantitative estimation of the mechanical state of the microtubule array. Although a variety of mechanisms have been proposed, the precise origins of microtubule deformation in living cells remain largely obscure. To investigate these mechanisms and their relative importance in cellular processes, a method is needed to accurately quantify microtubule bending within living cells. Here we describe a method for quantification of bending, using digital fluorescence microscope images to estimate the distribution of curvature in the microtubule. Digital images of individual microtubules can be used to obtain a set of discrete x-y coordinates along the microtubule contour, which is then used to estimate the curvature distribution. Due to system noise and digitization error, the estimate will be inaccurate to some degree. To quantify the inaccuracy, a computational model is used to simulate both the bending of thermally driven microtubules and their observation by digital fluorescence microscopy. This allows for direct comparison between experimental and simulated images, a method which we call model convolution microscopy. We assess the accuracy of various methods and present a suitable method for estimating the curvature distribution for thermally driven semiflexible polymers. Finally, we discuss extensions of the method to quantify microtubule curvature in living cells.
活细胞中的微管细胞骨架产生并抵抗机械力,以介导包括细胞分裂和迁移在内的基本细胞过程。数字荧光显微镜技术的最新进展使得直接观察活细胞中单个微管的弯曲成为可能,这使得对微管阵列的机械状态进行定量估计成为可能。尽管已经提出了多种机制,但活细胞中微管变形的确切起源在很大程度上仍然不清楚。为了研究这些机制及其在细胞过程中的相对重要性,需要一种方法来准确量化活细胞内微管的弯曲。在这里,我们描述了一种量化弯曲的方法,即使用数字荧光显微镜图像来估计微管中的曲率分布。单个微管的数字图像可用于沿着微管轮廓获得一组离散的x-y坐标,然后用于估计曲率分布。由于系统噪声和数字化误差,估计在某种程度上会不准确。为了量化这种不准确性,使用计算模型来模拟热驱动微管的弯曲及其通过数字荧光显微镜的观察。这允许对实验图像和模拟图像进行直接比较,我们将这种方法称为模型卷积显微镜。我们评估了各种方法的准确性,并提出了一种适合估计热驱动半柔性聚合物曲率分布的方法。最后,我们讨论了该方法在量化活细胞中微管曲率方面的扩展。