Brena Romulo M, Costello Joseph F
Department of Molecular Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA.
Hum Mol Genet. 2007 Apr 15;16 Spec No 1:R96-105. doi: 10.1093/hmg/ddm073.
Genetic and epigenetic mechanisms contribute to the development of human tumors. However, the conventional analysis of neoplasias has preferentially focused on only one of these processes. This approach has led to a biased, primarily genetic view, of human tumorigenesis. Epigenetic alterations, such as aberrant DNA methylation, are sufficient to induce tumor formation, and can modify the incidence, and determine the type of tumor which will arise in genetic models of cancer. These observations raise important questions about the degree to which genetic and epigenetic mechanisms cooperate in human tumorigenesis, the identity of the specific cooperating genes and how these genes interact functionally to determine the diverse biological and clinical paths to tumor initiation and progression. These gaps in our knowledge are, in part, due to the lack of methods for full-scale integrated genetic and epigenetic analyses. The ultimate goal to fill these gaps would include sequencing relevant regions of the 3-billion nucleotide genome, and determining the methylation status of the 28-million CpG dinucleotide methylome at single nucleotide resolution in different types of neoplasias. Here, we review the emergence and advancement of technologies to map ever larger proportions of the cancer methylome, and the unique discovery potential of integrating these with cancer genomic data. We discuss the knowledge gained from these large-scale analyses in the context of gene discovery, therapeutic application and building a more widely applicable mechanism-based model of human tumorigenesis.
遗传和表观遗传机制在人类肿瘤的发生发展中发挥作用。然而,对肿瘤形成的传统分析主要仅聚焦于其中一个过程。这种方法导致了对人类肿瘤发生的一种有偏差的、主要基于遗传学的观点。表观遗传改变,如异常的DNA甲基化,足以诱导肿瘤形成,并且可以改变肿瘤发生率,还能在癌症的遗传模型中决定肿瘤的类型。这些观察结果引发了一些重要问题,即遗传和表观遗传机制在人类肿瘤发生过程中的合作程度、特定合作基因的身份以及这些基因如何在功能上相互作用以决定肿瘤起始和进展的不同生物学和临床路径。我们知识上的这些空白部分是由于缺乏全面综合的遗传和表观遗传分析方法。填补这些空白的最终目标将包括对30亿个核苷酸的基因组相关区域进行测序,并在不同类型的肿瘤中以单核苷酸分辨率确定2800万个CpG二核苷酸甲基化组的甲基化状态。在这里,我们回顾了绘制越来越大比例的癌症甲基化组图谱的技术的出现和进展,以及将这些技术与癌症基因组数据整合所具有的独特发现潜力。我们在基因发现、治疗应用以及构建一个更广泛适用的基于机制的人类肿瘤发生模型的背景下讨论从这些大规模分析中获得的知识。