Moritz Gerrit, Reiher Markus
Laboratorium für Physikalische Chemie, ETH Zurich, Hönggerberg Campus, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland.
J Chem Phys. 2007 Jun 28;126(24):244109. doi: 10.1063/1.2741527.
The quantum chemical density matrix renormalization group (DMRG) algorithm is difficult to analyze because of the many numerical transformation steps involved. In particular, a decomposition of the intermediate and the converged DMRG states in terms of Slater determinants has not been accomplished yet. This, however, would allow one to better understand the convergence of the algorithm in terms of a configuration interaction expansion of the states. In this work, the authors fill this gap and provide a determinantal analysis of DMRG states upon convergence to the final states. The authors show that upon convergence, DMRG provides the same complete-active-space expansion for a given set of active orbitals as obtained from a corresponding configuration interaction calculation. Additional insight into DMRG convergence is provided, which cannot be obtained from the inspection of the total electronic energy alone. Indeed, we will show that the total energy can be misleading as a decrease of this observable during DMRG microiteration steps may not necessarily be taken as an indication for the pickup of essential configurations in the configuration interaction expansion. One result of this work is that a fine balance can be shown to exist between the chosen orbital ordering, the guess for the environment operators, and the choice of the number of renormalized states. This balance can be well understood in terms of the decomposition of total and system states in terms of Slater determinants.
量子化学密度矩阵重整化群(DMRG)算法由于涉及众多数值变换步骤而难以分析。特别是,尚未实现根据斯莱特行列式对中间态和收敛后的DMRG态进行分解。然而,这将使人们能够根据态的组态相互作用展开更好地理解算法的收敛性。在这项工作中,作者填补了这一空白,并在收敛到最终态时对DMRG态进行了行列式分析。作者表明,收敛时,DMRG对于给定的一组活性轨道提供了与相应组态相互作用计算相同的完全活性空间展开。此外,还提供了对DMRG收敛的深入见解,这是仅通过检查总电子能量无法获得的。实际上,我们将表明,总能量可能会产生误导,因为在DMRG微迭代步骤中该可观测量的降低不一定被视为在组态相互作用展开中选取基本组态的迹象。这项工作的一个结果是,可以证明在所选的轨道排序、对环境算符的猜测以及重整化态数量的选择之间存在一种精细的平衡。根据斯莱特行列式对总态和体系态进行分解,可以很好地理解这种平衡。