Boguslawski Katharina, Marti Konrad H, Legeza Ors, Reiher Markus
J Chem Theory Comput. 2012 Jun 12;8(6):1970-1982. doi: 10.1021/ct300211j. Epub 2012 Apr 26.
We present an approach for the calculation of spin density distributions for molecules that require very large active spaces for a qualitatively correct description of their electronic structure. Our approach is based on the density-matrix renormalization group (DMRG) algorithm to calculate the spin density matrix elements as a basic quantity for the spatially resolved spin density distribution. The spin density matrix elements are directly determined from the second-quantized elementary operators optimized by the DMRG algorithm. As an analytic convergence criterion for the spin density distribution, we employ our recently developed sampling-reconstruction scheme [J. Chem. Phys.2011, 134, 224101] to build an accurate complete-active-space configuration-interaction (CASCI) wave function from the optimized matrix product states. The spin density matrix elements can then also be determined as an expectation value employing the reconstructed wave function expansion. Furthermore, the explicit reconstruction of a CASCI-type wave function provides insight into chemically interesting features of the molecule under study such as the distribution of α and β electrons in terms of Slater determinants, CI coefficients, and natural orbitals. The methodology is applied to an iron nitrosyl complex which we have identified as a challenging system for standard approaches [J. Chem. Theory Comput.2011, 7, 2740].
我们提出了一种计算分子自旋密度分布的方法,对于那些需要非常大的活性空间才能对其电子结构进行定性正确描述的分子。我们的方法基于密度矩阵重整化群(DMRG)算法,将自旋密度矩阵元作为空间分辨自旋密度分布的基本量来计算。自旋密度矩阵元直接由DMRG算法优化的二次量子化基本算符确定。作为自旋密度分布的解析收敛标准,我们采用最近开发的采样 - 重构方案[《化学物理杂志》2011年,134卷,224101期],从优化的矩阵乘积态构建精确的完全活性空间组态相互作用(CASCI)波函数。然后,自旋密度矩阵元也可以作为使用重构波函数展开的期望值来确定。此外,CASCI型波函数的显式重构提供了对所研究分子化学有趣特征的洞察,例如根据斯莱特行列式、CI系数和自然轨道来描述α和β电子的分布。该方法应用于一种铁亚硝酰配合物,我们已将其确定为标准方法的一个具有挑战性的体系[《化学理论与计算杂志》2011年,7卷,2740期]。