Suppr超能文献

多原子分子非谐振动研究中的 Polyad 量子数和多重共振。

Polyad quantum numbers and multiple resonances in anharmonic vibrational studies of polyatomic molecules.

机构信息

Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation.

出版信息

J Chem Phys. 2013 Nov 14;139(18):184101. doi: 10.1063/1.4829143.

Abstract

In the theory of anharmonic vibrations of a polyatomic molecule, mixing the zero-order vibrational states due to cubic, quartic and higher-order terms in the potential energy expansion leads to the appearance of more-or-less isolated blocks of states (also called polyads), connected through multiple resonances. Such polyads of states can be characterized by a common secondary integer quantum number. This polyad quantum number is defined as a linear combination of the zero-order vibrational quantum numbers, attributed to normal modes, multiplied by non-negative integer polyad coefficients, which are subject to definition for any particular molecule. According to Kellman's method [J. Chem. Phys. 93, 6630 (1990)], the corresponding formalism can be conveniently described using vector algebra. In the present work, a systematic consideration of polyad quantum numbers is given in the framework of the canonical Van Vleck perturbation theory (CVPT) and its numerical-analytic operator implementation for reducing the Hamiltonian to the quasi-diagonal form, earlier developed by the authors. It is shown that CVPT provides a convenient method for the systematic identification of essential resonances and the definition of a polyad quantum number. The method presented is generally suitable for molecules of significant size and complexity, as illustrated by several examples of molecules up to six atoms. The polyad quantum number technique is very useful for assembling comprehensive basis sets for the matrix representation of the Hamiltonian after removal of all non-resonance terms by CVPT. In addition, the classification of anharmonic energy levels according to their polyad quantum numbers provides an additional means for the interpretation of observed vibrational spectra.

摘要

在多原子分子的非谐振动理论中,由于势能展开式中的立方项、四次项和更高次项的混合,导致零级振动态出现或多或少的孤立状态块(也称为多联体),通过多个共振连接。这种状态的多联体可以用一个共同的二次整数量子数来表示。这个多联体量子数是由零级振动量子数的线性组合定义的,这些量子数归因于正常模式,并乘以非负整数多联体系数,这些系数是为任何特定分子定义的。根据 Kellman 的方法[J. Chem. Phys. 93, 6630 (1990)],相应的形式可以方便地使用矢量代数来描述。在本工作中,在作者之前开发的正则范维克微扰理论(CVPT)及其数值解析算子实现的框架内,对多联体量子数进行了系统的考虑,用于将哈密顿量约化为准对角形式。结果表明,CVPT 为系统地识别基本共振和定义多联体量子数提供了一种方便的方法。所提出的方法通常适用于具有显著大小和复杂性的分子,如作者展示的几个六原子分子的例子。多联体量子数技术对于通过 CVPT 去除所有非共振项后组装哈密顿矩阵表示的综合基组非常有用。此外,根据它们的多联体量子数对非谐能级进行分类,为解释观察到的振动光谱提供了另一种手段。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验