Suppr超能文献

使用高波数拉曼光谱法鉴别基底细胞癌与病变周围皮肤。

Discriminating basal cell carcinoma from perilesional skin using high wave-number Raman spectroscopy.

作者信息

Nijssen Annieke, Maquelin Kees, Santos Luis F, Caspers Peter J, Bakker Schut Tom C, den Hollander Jan C, Neumann Martino H A, Puppels Gerwin J

机构信息

Erasmus MC, Center for Optical Diagnostics and Therapy, Department of Dermatology, Rotterdam, The Netherlands.

出版信息

J Biomed Opt. 2007 May-Jun;12(3):034004. doi: 10.1117/1.2750287.

Abstract

An expanding body of literature suggests Raman spectroscopy is a promising tool for skin cancer diagnosis and in-vivo tumor border demarcation. The development of an in-vivo diagnostic tool is, however, hampered by the fact that construction of fiber optic probes suitable for Raman spectroscopy in the so-called fingerprint region is complicated. In contrast, the use of the high wave-number region allows for fiber optic probes with a very simple design. We investigate whether high wave-number Raman spectroscopy (2800 to 3125 cm(-1)) is able to provide sufficient information for noninvasive discrimination between basal cell carcinoma (BCC) and noninvolved skin. Using a simple fiber optic probe, Raman spectra are obtained from 19 BCC biopsy specimens and 9 biopsy specimens of perilesional skin. A linear discriminant analysis (LDA)-based tissue classification model is developed, which discriminates between BCC and noninvolved skin with high accuracy. This is a crucial step in the development of clinical dermatological applications based on fiber optic Raman spectroscopy.

摘要

越来越多的文献表明,拉曼光谱是一种用于皮肤癌诊断和体内肿瘤边界划定的有前途的工具。然而,一种体内诊断工具的开发受到了阻碍,因为在所谓的指纹区域构建适用于拉曼光谱的光纤探头很复杂。相比之下,使用高波数区域允许设计非常简单的光纤探头。我们研究高波数拉曼光谱(2800至3125 cm(-1))是否能够提供足够的信息,用于对基底细胞癌(BCC)和未受累皮肤进行无创鉴别。使用一个简单的光纤探头,从19个BCC活检标本和9个病变周围皮肤的活检标本中获得拉曼光谱。开发了一种基于线性判别分析(LDA)的组织分类模型,该模型能够高精度地区分BCC和未受累皮肤。这是基于光纤拉曼光谱的临床皮肤病学应用开发中的关键一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验