Bassler B L, Yu C, Lee Y C, Roseman S
McCollum-Pratt Institute, Johns Hopkins University, Baltimore, Maryland 21218.
J Biol Chem. 1991 Dec 25;266(36):24276-86.
Chemotaxis of the marine bacterium Vibrio furnissii to chitin oligosaccharides has been described (Bassler, B. L., Gibbons, P. J., Yu, C., and Roseman, S. (1991) J. Biol. Chem. 266, 24268-24275). Some steps in catabolism of the oligosaccharides are reported here. GlcNAc, (GlcNAc)2, and (GlcNAc)3 are very rapidly consumed by intact cells, about 320 nmol of GlcNAc equivalents/min/mg of protein. (GlcNAc)4 is utilized somewhat more slowly. During these processes, there is virtually no release of hydrolysis products by the cells. The oligosaccharides enter the periplasmic space (via specific porins?) and are hydrolyzed by a unique membrane-bound endoenzyme (chitodextrinase) and an exoenzyme (N-acetyl-beta-glucosaminidase; beta-Glc-NAcidase). The genes encoding these enzymes have been cloned and expressed in Escherichia coli. The chitodextrinase cleaves soluble oligomers, but not chitin, to the di- and trisaccharides, while the periplasmic beta-GlcNAcidase hydrolyzes the GlcNAc termini from the oligomers. The end products in the periplasm, GlcNAc and (GlcNAc)2 (possibly (GlcNAc)3) are catabolized as follows. (a) Disaccharide pathway, A (GlcNAc)2 permease is apparently expressed by Vibrio furnissii. Translocated (GlcNAc)2 is rapidly hydrolyzed by a soluble, cytosolic beta-GlcNAcidase, and the GlcNAc is phosphorylated by an ATP-dependent, constitutive kinase to GlcNAc-6-P. (b) Monosaccharide pathway, Periplasmic GlcNAc is taken up by Enzyme IINag of the phosphoenolpyruvate:glycose phosphotransferase system, yielding GlcNAc-6-P, the common intermediate for both pathways. Finally, GlcNAc-6-P----Ac- + GlcNH2-6-P----Fru-6-P + NH3. (GlcNAc)2 is probably the "true" inducer of the chitin degradative enzymes described in this report and, depending on its concentration in the growth medium, differentially induces the periplasmic and cytosolic beta-GlcNAcidases. The disaccharide pathway appears to be the most important when the cells are confronted with low concentrations of the oligomers (e.g. in chemotaxis swarm plates). The relative activities of the induced enzymes suggest that the rate-limiting steps in oligosaccharide catabolism are the glycosidase activities in the periplasm.
海洋细菌弗氏弧菌对几丁质寡糖的趋化性已有报道(巴斯勒,B. L.,吉本斯,P. J.,于,C.,和罗斯曼,S.(1991)《生物化学杂志》266,24268 - 24275)。本文报道了寡糖分解代谢的一些步骤。完整细胞能非常迅速地消耗GlcNAc、(GlcNAc)2和(GlcNAc)3,约为320 nmol GlcNAc当量/分钟/毫克蛋白质。(GlcNAc)4的利用速度稍慢一些。在这些过程中,细胞几乎不释放水解产物。寡糖进入周质空间(通过特定孔蛋白?),并被一种独特的膜结合内切酶(几丁质糊精酶)和一种外切酶(N - 乙酰 - β - 葡糖胺酶;β - Glc - NAcidase)水解。编码这些酶的基因已被克隆并在大肠杆菌中表达。几丁质糊精酶将可溶性寡聚物而非几丁质切割成二糖和三糖,而周质β - GlcNAcidase从寡聚物中水解掉GlcNAc末端。周质中的终产物GlcNAc和(GlcNAc)2(可能还有(GlcNAc)3)的分解代谢如下。(a)二糖途径,弗氏弧菌显然表达一种(GlcNAc)2通透酶。转运进来的(GlcNAc)2被一种可溶性的胞质β - GlcNAcidase迅速水解,GlcNAc被一种依赖ATP的组成型激酶磷酸化为GlcNAc - 6 - P。(b)单糖途径,周质中的GlcNAc被磷酸烯醇丙酮酸:葡萄糖磷酸转移酶系统的酶IINag摄取,产生GlcNAc - 6 - P,这是两条途径的共同中间产物。最后,GlcNAc - 6 - P→Ac - + GlcNH2 - 6 - P→Fru - 6 - P + NH3。(GlcNAc)2可能是本报告中描述的几丁质降解酶的“真正”诱导物,并且根据其在生长培养基中的浓度,差异诱导周质和胞质β - GlcNAcidases。当细胞面对低浓度的寡聚物时(例如在趋化性群体平板中),二糖途径似乎是最重要的。诱导酶的相对活性表明寡糖分解代谢中的限速步骤是周质中的糖苷酶活性。