Li Xibing, Wang Lai-Xi, Wang Xuesong, Roseman Saul
Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
Glycobiology. 2007 Dec;17(12):1377-87. doi: 10.1093/glycob/cwm096. Epub 2007 Sep 20.
Chitin, one of the most abundant organic substances in nature, is consumed by marine bacteria, such as Vibrio cholerae, via a multitude of tightly regulated genes (Li and Roseman 2004, Proc Natl Acad Sci USA. 101:627-631). One such gene, cod, is reported here. It encodes a chitin oligosaccharide deacetylase (COD), when cells are induced by chitobiose, (GlcNH(2))(2), or crude crab shells. COD was molecularly cloned (COD-6His), overproduced, and purified to apparent homogeneity. COD is secreted at all stages of growth by induced V. cholerae. The gene sequence predicts a 26 N-terminal amino acid signal peptide not found in the isolated protein. COD is very active with chitin oligosaccharides, is virtually inactive with GlcNAc, and slightly active with colloidal ([(3)H]-N-acetyl)-chitin. The oligosaccharides are converted almost quantitatively to products lacking one acetyl group. The latter were characterized by mass spectrometry (ESI-MS), and treatment with nitrous acid. COD catalyzes the following reactions (n = 2-6): (GlcNAc)(n)--> GlcNAc-GlcNH(2)-(GlcNAc)(n-2) + Ac(-). That is, COD hydrolyzes the N-acetyl groups attached to the penultimate GlcNAc residue. The gene bank sequence data show that cod is highly conserved in Vibrios and Photobacteria. One such gene encodes a deacetylase isolated from V. alginolytics (Ohishi et al. 1997, Biosci Biotech Biochem. 61:1113-1117; Ohishi et al. 2000, J Biosci Bioeng. 90:561-563), that is specific for (GlcNAc)(2), but inactive with higher oligosaccharides. The COD enzymatic products, GlcNAc-GlcNH(2)-(GlcNAc)(n), closely resemble those obtained by hydrolysis of the chitooligosaccharides with Nod B: GlcNH(2)-(GlcNAc)(3-4). The latter are key intermediates in the biosynthesis of Nod factors, critically important in communications between the symbiotic nitrogen fixing bacteria and plants. Conceivably, the COD products play equally important roles in cellular communications that remain to be defined.
几丁质是自然界中最丰富的有机物质之一,海洋细菌如霍乱弧菌通过众多严格调控的基因来消耗它(Li和Roseman,2004年,《美国国家科学院院刊》。101:627 - 631)。本文报道了其中一个这样的基因,即cod。当细胞受到壳二糖、(GlcNH(2))(2)或粗蟹壳诱导时,它编码一种几丁质寡糖脱乙酰酶(COD)。COD被进行了分子克隆(COD - 6His),过量表达,并纯化至表观均一。诱导后的霍乱弧菌在生长的各个阶段都会分泌COD。基因序列预测在分离出的蛋白质中不存在一个26个N端氨基酸的信号肽。COD对几丁质寡糖非常活跃,对GlcNAc几乎无活性,对胶体([(3)H]-N - 乙酰)-几丁质有轻微活性。寡糖几乎定量地转化为缺少一个乙酰基的产物。后者通过质谱(ESI - MS)和亚硝酸处理进行了表征。COD催化以下反应(n = 2 - 6):(GlcNAc)(n)--> GlcNAc - GlcNH(2)-(GlcNAc)(n - 2)+Ac(-)。也就是说,COD水解连接在倒数第二个GlcNAc残基上的N - 乙酰基。基因库序列数据表明,cod在弧菌属和发光细菌中高度保守。其中一个这样的基因编码一种从溶藻弧菌中分离出的脱乙酰酶(Ohishi等人,1997年,《生物科学、生物技术与生物化学》。61:1113 - 1117;Ohishi等人,2000年,《生物科学与生物工程杂志》。90:561 - 563),它对(GlcNAc)(2)具有特异性,但对更高的寡糖无活性。COD的酶促产物GlcNAc - GlcNH(2)-(GlcNAc)(n)与通过用Nod B水解壳寡糖得到的产物非常相似:GlcNH(2)-(GlcNAc)(3 - 4)。后者是结瘤因子生物合成中的关键中间体,在共生固氮细菌与植物之间的通讯中至关重要。可以想象,COD产物在仍有待确定的细胞通讯中可能发挥同样重要的作用。