Suppr超能文献

人类真菌病原体光滑念珠菌菌株ATCC 2001中的高渗甘油反应途径缺乏在酿酒酵母中起作用的信号分支。

The high-osmolarity glycerol response pathway in the human fungal pathogen Candida glabrata strain ATCC 2001 lacks a signaling branch that operates in baker's yeast.

作者信息

Gregori Christa, Schüller Christoph, Roetzer Andreas, Schwarzmüller Tobias, Ammerer Gustav, Kuchler Karl

机构信息

Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University Vienna, ,Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria.

出版信息

Eukaryot Cell. 2007 Sep;6(9):1635-45. doi: 10.1128/EC.00106-07. Epub 2007 Jul 6.

Abstract

The high-osmolarity glycerol (HOG) mitogen-activated protein (MAP) kinase pathway mediates adaptation to high-osmolarity stress in the yeast Saccharomyces cerevisiae. Here we investigate the function of HOG in the human opportunistic fungal pathogen Candida glabrata. C. glabrata sho1Delta (Cgsho1Delta) deletion strains from the sequenced ATCC 2001 strain display severe growth defects under hyperosmotic conditions, a phenotype not observed for yeast sho1Delta mutants. However, deletion of CgSHO1 in other genetic backgrounds fails to cause osmostress hypersensitivity, whereas cells lacking the downstream MAP kinase Pbs2 remain osmosensitive. Notably, ATCC 2001 Cgsho1Delta cells also display methylglyoxal hypersensitivity, implying the inactivity of the Sln1 branch in ATCC 2001. Genomic sequencing of CgSSK2 in different C. glabrata backgrounds demonstrates that ATCC 2001 harbors a truncated and mutated Cgssk2-1 allele, the only orthologue of yeast SSK2/SSK22 genes. Thus, the osmophenotype of ATCC 2001 is caused by a point mutation in Cgssk2-1, which debilitates the second HOG pathway branch. Functional complementation experiments unequivocally demonstrate that HOG signaling in yeast and C. glabrata share similar functions in osmostress adaptation. In contrast to yeast, however, Cgsho1Delta mutants display hypersensitivity to weak organic acids such as sorbate and benzoate. Hence, CgSho1 is also implicated in modulating weak acid tolerance, suggesting that HOG signaling in C. glabrata mediates the response to multiple stress conditions.

摘要

高渗甘油(HOG)促分裂原活化蛋白(MAP)激酶途径介导酿酒酵母对高渗胁迫的适应性。在此,我们研究HOG在人类机会性真菌病原体光滑念珠菌中的功能。来自已测序的ATCC 2001菌株的光滑念珠菌sho1Δ(Cgsho1Δ)缺失菌株在高渗条件下表现出严重的生长缺陷,而酵母sho1Δ突变体未观察到这种表型。然而,在其他遗传背景中缺失CgSHO1并不会导致对渗透胁迫超敏感,而缺乏下游MAP激酶Pbs2的细胞仍然对渗透敏感。值得注意的是,ATCC 2001 Cgsho1Δ细胞也表现出对甲基乙二醛超敏感,这意味着ATCC 2001中Sln1分支无活性。对不同光滑念珠菌背景下的CgSSK2进行基因组测序表明,ATCC 2001含有截短且突变的Cgssk2 - 1等位基因,它是酵母SSK2/SSK22基因的唯一直系同源物。因此,ATCC 2001的渗透表型是由Cgssk2 - 1中的一个点突变引起的,该突变削弱了第二条HOG途径分支。功能互补实验明确证明,酵母和光滑念珠菌中的HOG信号在渗透胁迫适应中具有相似功能。然而,与酵母不同的是,Cgsho1Δ突变体对山梨酸和苯甲酸等弱酸表现出超敏感性。因此,CgSho1也与调节弱酸耐受性有关,这表明光滑念珠菌中的HOG信号介导了对多种胁迫条件的反应。

相似文献

引用本文的文献

5
Oxidative stress response pathways in fungi.真菌中的氧化应激反应途径。
Cell Mol Life Sci. 2022 Jun 1;79(6):333. doi: 10.1007/s00018-022-04353-8.

本文引用的文献

5
Changing patterns and trends in systemic fungal infections.系统性真菌感染的变化模式与趋势
J Antimicrob Chemother. 2005 Sep;56 Suppl 1:i5-i11. doi: 10.1093/jac/dki218.
7
Cell wall integrity signaling in Saccharomyces cerevisiae.酿酒酵母中的细胞壁完整性信号传导
Microbiol Mol Biol Rev. 2005 Jun;69(2):262-91. doi: 10.1128/MMBR.69.2.262-291.2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验