Vehring Stefanie, Pakkiri Leroy, Schröer Adrien, Alder-Baerens Nele, Herrmann Andreas, Menon Anant K, Pomorski Thomas
Institute of Biology/Biophysics, Humboldt University of Berlin, Invalidenstr. 42, 10115 Berlin, Germany.
Eukaryot Cell. 2007 Sep;6(9):1625-34. doi: 10.1128/EC.00198-07. Epub 2007 Jul 6.
A phospholipid flippase activity from the endoplasmic reticulum (ER) of the model organism Saccharomyces cerevisiae has been characterized and functionally reconstituted into proteoliposomes. Analysis of the transbilayer movement of acyl-7-nitrobenz-2-oxa-1,3-diazol-4-yl (acyl-NBD)-labeled phosphatidylcholine in yeast microsomes using a fluorescence stopped-flow back exchange assay revealed a rapid, ATP-independent flip-flop (half-time, <2 min). Proteoliposomes prepared from a Triton X-100 extract of yeast microsomal membranes were also capable of flipping NBD-labeled phospholipid analogues rapidly in an ATP-independent fashion. Flippase activity was sensitive to the protein modification reagents N-ethylmaleimide and diethylpyrocarbonate. Resolution of the Triton X-100 extract by velocity gradient centrifugation resulted in the identification of a approximately 4S protein fraction enriched in flippase activity as well as of other fractions where flippase activity was depleted or undetectable. We estimate that flippase activity is due to a protein(s) representing approximately 2% (wt/wt) of proteins in the Triton X-100 extract. These results indicate that specific proteins are required to facilitate ATP-independent phospholipid flip-flop in the ER and that their identification is feasible. The architecture of the ER protein translocon suggests that it could account for the flippase activity in the ER. We tested this hypothesis using microsomes prepared from a temperature-sensitive yeast mutant in which the major translocon component, Sec61p, was quantitatively depleted. We found that the protein translocon is not required for transbilayer movement of phospholipids across the ER. Our work defines yeast as a promising model system for future attempts to identify the ER phospholipid flippase and to test and purify candidate flippases.
对模式生物酿酒酵母内质网(ER)中的一种磷脂翻转酶活性进行了表征,并在蛋白脂质体中实现了功能重建。使用荧光停流反向交换分析法分析酵母微粒体中酰基-7-硝基苯并-2-恶唑-1,3-二唑-4-基(酰基-NBD)标记的磷脂酰胆碱的跨膜运动,结果显示其存在快速的、不依赖ATP的翻转(半衰期,<2分钟)。由酵母微粒体膜的 Triton X-100提取物制备的蛋白脂质体也能够以不依赖ATP的方式快速翻转NBD标记的磷脂类似物。翻转酶活性对蛋白质修饰试剂N-乙基马来酰亚胺和焦碳酸二乙酯敏感。通过速度梯度离心对Triton X-100提取物进行分离,结果鉴定出一个富含翻转酶活性的约4S蛋白质组分,以及其他翻转酶活性降低或无法检测到的组分。我们估计翻转酶活性归因于一种蛋白质,其在Triton X-100提取物中的蛋白质含量约为2%(重量/重量)。这些结果表明,在内质网中促进不依赖ATP的磷脂翻转需要特定的蛋白质,并且它们的鉴定是可行的。内质网蛋白质转运体的结构表明它可能是内质网中翻转酶活性的原因。我们使用从温度敏感型酵母突变体制备的微粒体测试了这一假设,在该突变体中主要的转运体成分Sec61p被定量耗尽。我们发现,磷脂跨内质网的跨膜运动不需要蛋白质转运体。我们的工作将酵母定义为一个有前景的模型系统,可用于未来鉴定内质网磷脂翻转酶以及测试和纯化候选翻转酶的尝试。