Suppr超能文献

Requirement for IFN-gamma, CD8+ T lymphocytes, and NKT cells in talactoferrin-induced inhibition of neu+ tumors.

作者信息

Spadaro Michela, Curcio Claudia, Varadhachary Atul, Cavallo Federica, Engelmayer Jose, Blezinger Paul, Pericle Federica, Forni Guido

机构信息

Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.

出版信息

Cancer Res. 2007 Jul 1;67(13):6425-32. doi: 10.1158/0008-5472.CAN-06-4080.

Abstract

We have previously shown that talactoferrin-alfa (TLF), a recombinant human lactoferrin, is an immunomodulatory protein that is active against implanted tumors, both as a single agent and in combination with chemotherapy. In this study, we show that talactoferrin is active against autochthonous tumors in a transgenic mouse line, which is more analogous to human cancers, and identify key mechanistic steps involved in the anticancer activity of oral TLF. BALB/c mice transgenic for the rat neu (ErbB2) oncogene (BALB-neuT) treated with oral TLF showed a significant delay in carcinogenesis, with 60% tumor protection relative to vehicle-treated mice at week 21. Oral TLF also showed tumor growth inhibition in wild-type BALB/c mice implanted with neu(+) mammary adenocarcinoma, with one third displaying a long-lasting or complete response. Oral TLF induces an increase in intestinal mucosal IFN-gamma production and an increase in Peyer's patch cellularity, including expansion of CD8(+) T lymphocytes and NKT cells, and the enhancement of CD8(+) T-cell cytotoxicity. In IFN-gamma knockout mice, there is an absence of the TLF-induced Peyer's patch cellularity, no expansion of CD8(+) T lymphocytes and NKT cells, and loss of TLF anticancer activity. TLF antitumor activity is also lost in mice depleted of CD8(+) T cells and in CD1 knockout mice, which lack NKT activity. Thus, the inhibition of distant tumors by oral TLF seems to be mediated by an IFN-gamma-dependent enhancement of CD8(+) T- and NKT cell activity initiated within the intestinal mucosa.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验