Ryan Patricia A, Kirk Brian W, Euler Chad W, Schuch Raymond, Fischetti Vincent A
Department of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York, USA.
PLoS Comput Biol. 2007 Jul;3(7):e132. doi: 10.1371/journal.pcbi.0030132.
Bacteria-host interactions are dynamic processes, and understanding transcriptional responses that directly or indirectly regulate the expression of genes involved in initial infection stages would illuminate the molecular events that result in host colonization. We used oligonucleotide microarrays to monitor (in vitro) differential gene expression in group A streptococci during pharyngeal cell adherence, the first overt infection stage. We present neighbor clustering, a new computational method for further analyzing bacterial microarray data that combines two informative characteristics of bacterial genes that share common function or regulation: (1) similar gene expression profiles (i.e., co-expression); and (2) physical proximity of genes on the chromosome. This method identifies statistically significant clusters of co-expressed gene neighbors that potentially share common function or regulation by coupling statistically analyzed gene expression profiles with the chromosomal position of genes. We applied this method to our own data and to those of others, and we show that it identified a greater number of differentially expressed genes, facilitating the reconstruction of more multimeric proteins and complete metabolic pathways than would have been possible without its application. We assessed the biological significance of two identified genes by assaying deletion mutants for adherence in vitro and show that neighbor clustering indeed provides biologically relevant data. Neighbor clustering provides a more comprehensive view of the molecular responses of streptococci during pharyngeal cell adherence.
细菌与宿主的相互作用是动态过程,了解直接或间接调控参与初始感染阶段相关基因表达的转录反应,将有助于阐明导致宿主定植的分子事件。我们使用寡核苷酸微阵列监测A组链球菌在咽部细胞黏附(首个明显感染阶段)过程中的(体外)差异基因表达。我们提出了邻域聚类法,这是一种用于进一步分析细菌微阵列数据的新计算方法,它结合了具有共同功能或调控的细菌基因的两个信息特征:(1)相似的基因表达谱(即共表达);(2)基因在染色体上的物理邻近性。该方法通过将经统计分析的基因表达谱与基因的染色体位置相结合,识别出可能具有共同功能或调控的共表达基因邻域的统计学显著聚类。我们将此方法应用于我们自己的数据以及其他人的数据,结果表明它识别出了更多差异表达基因,相比于未应用该方法时,有助于重建更多的多聚体蛋白和完整的代谢途径。我们通过检测缺失突变体的体外黏附情况,评估了两个已识别基因的生物学意义,结果表明邻域聚类法确实提供了具有生物学相关性的数据。邻域聚类法为链球菌在咽部细胞黏附过程中的分子反应提供了更全面的视角。