Suppr超能文献

利用 CRISPR/Cas9 下调和失活功能会改变植物的生长、气孔功能,并提高番茄对盐度和渗透胁迫的耐受性。

Down Regulation and Loss of Function Using CRISPR/Cas9 Alters Plant Growth, Stomatal Function and Improves Tomato Tolerance to Salinity and Osmotic Stress.

机构信息

Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, Rabat 1014, Morocco.

GBF, Université de Toulouse, INRA, 31326 Castanet-Tolosan, France.

出版信息

Genes (Basel). 2020 Mar 3;11(3):272. doi: 10.3390/genes11030272.

Abstract

Auxin controls multiple aspects of plant growth and development. However, its role in stress responses remains poorly understood. Auxin acts on the transcriptional regulation of target genes, mainly through Auxin Response Factors (). This study focuses on the involvement of in tomato tolerance to salinity and osmotic stress. Using a reverse genetic approach, we found that the antisense down-regulation of promotes root development and density, increases soluble sugars content and maintains chlorophyll content at high levels under stress conditions. Furthermore, -as displayed higher tolerance to salt and osmotic stress through reduced stomatal conductance coupled with increased leaf relative water content and Abscisic acid (ABA) content under normal and stressful conditions. This increase in ABA content was correlated with the activation of ABA biosynthesis genes and the repression of ABA catabolism genes. and genes were up-regulated in -as plants which can result in a better tolerance to salt and osmotic stress. A CRISPR/Cas9 induced mutant showed similar growth and stomatal responses as -as plants, which suggest that can tolerate salt and osmotic stresses. Our data support the involvement of as a key factor in tomato tolerance to salt and osmotic stresses and confirm the use of CRISPR technology as an efficient tool for functional reverse genetics studies.

摘要

生长素控制着植物生长和发育的多个方面。然而,其在应激反应中的作用仍知之甚少。生长素作用于靶基因的转录调控,主要通过生长素响应因子()。本研究关注在番茄耐盐和渗透胁迫中的作用。通过反向遗传学方法,我们发现反义下调促进了根的发育和密度的增加,增加了可溶性糖的含量,并在胁迫条件下维持了较高的叶绿素含量。此外,-as 通过降低气孔导度,同时增加叶片相对含水量和脱落酸(ABA)含量,在正常和胁迫条件下表现出更高的耐盐和渗透胁迫能力。ABA 含量的增加与 ABA 生物合成基因的激活和 ABA 分解代谢基因的抑制有关。-as 植株中 基因和 基因的上调可能导致其对盐和渗透胁迫的耐受性增强。CRISPR/Cas9 诱导的 突变体表现出与 -as 植株相似的生长和气孔反应,这表明 可以耐受盐和渗透胁迫。我们的数据支持 作为番茄耐盐和渗透胁迫的关键因素之一,并证实了 CRISPR 技术作为功能反向遗传学研究的有效工具的使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/404c/7140898/a5b7ba2fa864/genes-11-00272-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验