Miller Noam Y, Shettleworth Sara J
Department of Psychology, University of Toronto, Toronto, ON, Canada.
J Exp Psychol Anim Behav Process. 2007 Jul;33(3):191-212. doi: 10.1037/0097-7403.33.3.191.
K. Cheng (1986) suggested that learning the geometry of enclosing surfaces takes place in a geometric module blind to other spatial information. Failures to find blocking or overshadowing of geometry learning by features near a goal seem consistent with this view. The authors present an operant model in which learning spatial features competes with geometry learning, as in the Rescorla-Wagner model. Relative total associative strength of cues at a location determines choice of that location and thus the frequencies of reward paired with each cue. The model shows how competitive learning of local features and geometry can appear to result in potentiation, blocking, or independence, depending on enclosure shape and kind of features. The model reproduces numerous findings from dry arenas and water mazes.
郑(1986年)提出,对封闭表面几何形状的学习发生在一个对其他空间信息视而不见的几何模块中。未能发现目标附近特征对几何学习的阻碍或遮蔽似乎与这一观点一致。作者提出了一个操作性模型,其中学习空间特征与几何学习相互竞争,就像在雷斯克拉-瓦格纳模型中一样。某一位置线索的相对总联想强度决定了对该位置的选择,从而决定了与每个线索配对的奖励频率。该模型展示了局部特征和几何形状的竞争性学习如何根据封闭形状和特征类型而表现出增强、阻碍或独立的效果。该模型重现了来自干燥场地和水迷宫的众多研究结果。