Suppr超能文献

定位更新世避难所:比较系统地理学和生态位模型预测。

Locating pleistocene refugia: comparing phylogeographic and ecological niche model predictions.

机构信息

Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States of America.

出版信息

PLoS One. 2007 Jul 11;2(6):e563. doi: 10.1371/journal.pone.0000563.

Abstract

Ecological niche models (ENMs) provide a means of characterizing the spatial distribution of suitable conditions for species, and have recently been applied to the challenge of locating potential distributional areas at the Last Glacial Maximum (LGM) when unfavorable climate conditions led to range contractions and fragmentation. Here, we compare and contrast ENM-based reconstructions of LGM refugial locations with those resulting from the more traditional molecular genetic and phylogeographic predictions. We examined 20 North American terrestrial vertebrate species from different regions and with different range sizes for which refugia have been identified based on phylogeographic analyses, using ENM tools to make parallel predictions. We then assessed the correspondence between the two approaches based on spatial overlap and areal extent of the predicted refugia. In 14 of the 20 species, the predictions from ENM and predictions based on phylogeographic studies were significantly spatially correlated, suggesting that the two approaches to development of refugial maps are converging on a similar result. Our results confirm that ENM scenario exploration can provide a useful complement to molecular studies, offering a less subjective, spatially explicit hypothesis of past geographic patterns of distribution.

摘要

生态位模型 (ENM) 提供了一种描述物种适宜条件空间分布的方法,最近已应用于在末次冰期 (LGM) 时,由于不利的气候条件导致范围收缩和碎片化,寻找潜在分布区域的挑战。在这里,我们比较和对比了基于 ENM 的 LGM 避难所位置重建与更传统的分子遗传和系统地理学预测的结果。我们检查了来自不同地区和不同范围大小的 20 种北美陆地脊椎动物物种,这些物种的避难所是根据系统地理学分析确定的,使用 ENM 工具进行平行预测。然后,我们根据预测避难所的空间重叠和面积范围来评估两种方法之间的对应关系。在 20 个物种中的 14 个中,ENM 预测和基于系统地理学研究的预测在空间上显著相关,这表明两种开发避难地图的方法正在朝着类似的结果趋同。我们的结果证实,ENM 情景探索可以为分子研究提供有用的补充,提供过去分布地理模式的更客观、空间明确的假设。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c713/1905943/2c4be681ee7e/pone.0000563.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验