Doktycz Mitchel J, Simpson Michael L
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
Mol Syst Biol. 2007;3:125. doi: 10.1038/msb4100165. Epub 2007 Jul 10.
Biological systems display a functional diversity, density and efficiency that make them a paradigm for synthetic systems. In natural systems, the cell is the elemental unit and efforts to emulate cells, their components, and organization have relied primarily on the use of bioorganic materials. Impressive advances have been made towards assembling simple genetic systems within cellular scale containers. These biological system assembly efforts are particularly instructive, as we gain command over the directed synthesis and assembly of synthetic nanoscale structures. Advances in nanoscale fabrication, assembly, and characterization are providing the tools and materials for characterizing and emulating the smallest scale features of biology. Further, they are revealing unique physical properties that emerge at the nanoscale. Realizing these properties in useful ways will require attention to the assembly of these nanoscale components. Attention to systems biology principles can lead to the practical development of nanoscale technologies with possible realization of synthetic systems with cell-like complexity. In turn, useful tools for interpreting biological complexity and for interfacing to biological processes will result.
生物系统展现出功能多样性、密度和效率,使其成为合成系统的典范。在自然系统中,细胞是基本单元,而模拟细胞、其组成部分及组织结构的努力主要依赖于生物有机材料的使用。在细胞尺度的容器内组装简单遗传系统已取得了令人瞩目的进展。这些生物系统组装工作具有特别的指导意义,因为我们能够掌控合成纳米级结构的定向合成与组装。纳米级制造、组装及表征方面的进展正在为表征和模拟生物学的最小尺度特征提供工具和材料。此外,它们还揭示了在纳米尺度出现的独特物理性质。以有用的方式实现这些性质将需要关注这些纳米级组件的组装。关注系统生物学原理能够推动纳米级技术的实际发展,并有可能实现具有类似细胞复杂性的合成系统。反过来,这将产生用于解释生物复杂性以及与生物过程对接的有用工具。