Suppr超能文献

基于核酸纳米结构构建的空间相互作用生物分子网络。

Spatially-interactive biomolecular networks organized by nucleic acid nanostructures.

机构信息

Center for Single Molecule Biophysics, Arizona State University, Tempe, 85287, United States.

出版信息

Acc Chem Res. 2012 Aug 21;45(8):1215-26. doi: 10.1021/ar200295q. Epub 2012 May 29.

Abstract

Living systems have evolved a variety of nanostructures to control the molecular interactions that mediate many functions including the recognition of targets by receptors, the binding of enzymes to substrates, and the regulation of enzymatic activity. Mimicking these structures outside of the cell requires methods that offer nanoscale control over the organization of individual network components. Advances in DNA nanotechnology have enabled the design and fabrication of sophisticated one-, two- and three-dimensional (1D, 2D, and 3D) nanostructures that utilize spontaneous and sequence-specific DNA hybridization. Compared with other self-assembling biopolymers, DNA nanostructures offer predictable and programmable interactions and surface features to which other nanoparticles and biomolecules can be precisely positioned. The ability to control the spatial arrangement of the components while constructing highly organized networks will lead to various applications of these systems. For example, DNA nanoarrays with surface displays of molecular probes can sense noncovalent hybridization interactions with DNA, RNA, and proteins and covalent chemical reactions. DNA nanostructures can also align external molecules into well-defined arrays, which may improve the resolution of many structural determination methods, such as X-ray diffraction, cryo-EM, NMR, and super-resolution fluorescence. Moreover, by constraint of target entities to specific conformations, self-assembled DNA nanostructures can serve as molecular rulers to evaluate conformation-dependent activities. This Account describes the most recent advances in the DNA nanostructure directed assembly of biomolecular networks and explores the possibility of applying this technology to other fields of study. Recently, several reports have demonstrated the DNA nanostructure directed assembly of spatially interactive biomolecular networks. For example, researchers have constructed synthetic multienzyme cascades by organizing the position of the components using DNA nanoscaffolds in vitro or by utilizing RNA matrices in vivo. These structures display enhanced efficiency compared with the corresponding unstructured enzyme mixtures. Such systems are designed to mimic cellular function, where substrate diffusion between enzymes is facilitated and reactions are catalyzed with high efficiency and specificity. In addition, researchers have assembled multiple choromophores into arrays using a DNA nanoscaffold that optimizes the relative distance between the dyes and their spatial organization. The resulting artificial light-harvesting system exhibits efficient cascading energy transfers. Finally, DNA nanostructures have been used as assembly templates to construct nanodevices that execute rationally designed behaviors, including cargo loading, transportation, and route control.

摘要

生命系统已经进化出多种纳米结构来控制介导多种功能的分子相互作用,包括受体对靶标的识别、酶与底物的结合以及酶活性的调节。在细胞外模拟这些结构需要提供纳米级控制单个网络组件组织的方法。DNA 纳米技术的进步使得设计和制造复杂的一维 (1D)、二维 (2D) 和三维 (3D) 纳米结构成为可能,这些结构利用自发和序列特异性 DNA 杂交。与其他自组装生物聚合物相比,DNA 纳米结构提供了可预测和可编程的相互作用以及表面特征,可以精确定位其他纳米颗粒和生物分子。在构建高度组织化网络的同时控制组件的空间排列的能力将导致这些系统的各种应用。例如,具有分子探针表面显示的 DNA 纳米阵列可以感知 DNA、RNA 和蛋白质的非共价杂交相互作用以及共价化学反应。DNA 纳米结构还可以将外部分子排列成定义明确的阵列,这可能会提高许多结构测定方法的分辨率,例如 X 射线衍射、冷冻电镜、NMR 和超分辨率荧光。此外,通过将目标实体约束到特定构象,自组装 DNA 纳米结构可以用作分子标尺来评估构象依赖性活性。本综述描述了 DNA 纳米结构指导的生物分子网络组装的最新进展,并探讨了将该技术应用于其他研究领域的可能性。最近,有几项报告证明了 DNA 纳米结构指导的空间相互作用生物分子网络的组装。例如,研究人员通过在体外使用 DNA 纳米支架组织组件的位置或在体内利用 RNA 基质来构建合成多酶级联。与相应的无结构酶混合物相比,这些结构显示出更高的效率。这些系统旨在模拟细胞功能,其中促进底物在酶之间的扩散,并以高效率和特异性催化反应。此外,研究人员使用 DNA 纳米支架将多个发色团组装成阵列,该支架优化了染料之间的相对距离及其空间组织。所得的人工光捕获系统表现出有效的级联能量转移。最后,DNA 纳米结构被用作组装模板来构建执行合理设计行为的纳米器件,包括货物装载、运输和路线控制。

相似文献

1
Spatially-interactive biomolecular networks organized by nucleic acid nanostructures.
Acc Chem Res. 2012 Aug 21;45(8):1215-26. doi: 10.1021/ar200295q. Epub 2012 May 29.
2
Engineering DNA self-assemblies as templates for functional nanostructures.
Acc Chem Res. 2014 Jun 17;47(6):1654-62. doi: 10.1021/ar400305g. Epub 2014 Mar 3.
3
Biomimetic Compartments Scaffolded by Nucleic Acid Nanostructures.
Small. 2019 Jun;15(26):e1900256. doi: 10.1002/smll.201900256. Epub 2019 Mar 18.
4
Assembly of multienzyme complexes on DNA nanostructures.
Nat Protoc. 2016 Nov;11(11):2243-2273. doi: 10.1038/nprot.2016.139. Epub 2016 Oct 20.
5
DNA Nanoscaffolds for Multienzyme Systems Assembly.
Methods Mol Biol. 2022;2487:93-112. doi: 10.1007/978-1-0716-2269-8_6.
6
DNA nanoarchitectures: steps towards biological applications.
Chembiochem. 2014 Jul 7;15(10):1374-90. doi: 10.1002/cbic.201402014. Epub 2014 Jun 20.
7
Control of enzyme reactions by a reconfigurable DNA nanovault.
Nat Commun. 2017 Oct 19;8(1):992. doi: 10.1038/s41467-017-01072-8.
8
DNA-π Amphiphiles: A Unique Building Block for the Crafting of DNA-Decorated Unilamellar Nanostructures.
Acc Chem Res. 2020 Nov 17;53(11):2668-2679. doi: 10.1021/acs.accounts.0c00492. Epub 2020 Oct 14.
9
Self-assembled Nucleic Acid Nanostructures for Biomedical Applications.
Curr Top Med Chem. 2022;22(8):652-667. doi: 10.2174/1568026622666220321140729.
10
Uncovering the self-assembly of DNA nanostructures by thermodynamics and kinetics.
Acc Chem Res. 2014 Jun 17;47(6):1861-70. doi: 10.1021/ar5000665. Epub 2014 May 22.

引用本文的文献

1
Analyzing DNA Origami Nanostructure Assembly by Dynamic Light Scattering and Nanoparticle Tracking Analysis.
Small Methods. 2025 Aug;9(8):e2500295. doi: 10.1002/smtd.202500295. Epub 2025 Jun 19.
3
Progressive cancer targeting by programmable aptamer-tethered nanostructures.
MedComm (2020). 2024 Oct 20;5(11):e775. doi: 10.1002/mco2.775. eCollection 2024 Nov.
4
Macrophage-Targeting DNA Nanomaterials: A Future Direction of Biological Therapy.
Int J Nanomedicine. 2024 Apr 23;19:3641-3655. doi: 10.2147/IJN.S459288. eCollection 2024.
5
A Robust and Efficient Method to Purify DNA-Scaffolded Nanostructures by Gravity-Driven Size Exclusion Chromatography.
Langmuir. 2024 Apr 23;40(16):8365-8372. doi: 10.1021/acs.langmuir.3c03778. Epub 2024 Apr 10.
6
Exploring the diverse biomedical applications of programmable and multifunctional DNA nanomaterials.
J Nanobiotechnology. 2023 Aug 23;21(1):290. doi: 10.1186/s12951-023-02071-2.
8
DNA nanostructures as templates for biomineralization.
Nat Rev Chem. 2021 Feb;5(2):93-108. doi: 10.1038/s41570-020-00242-5. Epub 2021 Jan 13.
10
Biocatalytic cascades and intercommunicated biocatalytic cascades in microcapsule systems.
Chem Sci. 2022 Apr 29;13(25):7437-7448. doi: 10.1039/d2sc01542k. eCollection 2022 Jun 29.

本文引用的文献

1
Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures.
J Am Chem Soc. 2012 Mar 28;134(12):5516-9. doi: 10.1021/ja300897h. Epub 2012 Mar 16.
2
A logic-gated nanorobot for targeted transport of molecular payloads.
Science. 2012 Feb 17;335(6070):831-4. doi: 10.1126/science.1214081.
3
Zinc-finger proteins for site-specific protein positioning on DNA-origami structures.
Angew Chem Int Ed Engl. 2012 Mar 5;51(10):2421-4. doi: 10.1002/anie.201108199. Epub 2012 Jan 27.
4
Multilayer DNA origami packed on hexagonal and hybrid lattices.
J Am Chem Soc. 2012 Jan 25;134(3):1770-4. doi: 10.1021/ja209719k. Epub 2012 Jan 13.
5
Cellular immunostimulation by CpG-sequence-coated DNA origami structures.
ACS Nano. 2011 Dec 27;5(12):9696-702. doi: 10.1021/nn203161y. Epub 2011 Nov 23.
7
DNA-mediated assembly of cytochrome P450 BM3 subdomains.
J Am Chem Soc. 2011 Oct 12;133(40):16111-8. doi: 10.1021/ja204993s. Epub 2011 Sep 15.
9
Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching.
Nature. 2011 Jul 24;476(7358):109-13. doi: 10.1038/nature10257.
10
Aptamer-conjugated DNA icosahedral nanoparticles as a carrier of doxorubicin for cancer therapy.
ACS Nano. 2011 Aug 23;5(8):6156-63. doi: 10.1021/nn200693a. Epub 2011 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验