Suppr超能文献

将领域知识与统计和数据挖掘方法相结合用于高密度基因组单核苷酸多态性疾病关联分析。

Integrating domain knowledge with statistical and data mining methods for high-density genomic SNP disease association analysis.

作者信息

Dinu Valentin, Zhao Hongyu, Miller Perry L

机构信息

Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA.

出版信息

J Biomed Inform. 2007 Dec;40(6):750-60. doi: 10.1016/j.jbi.2007.06.002. Epub 2007 Jun 10.

Abstract

Genome-wide association studies can help identify multi-gene contributions to disease. As the number of high-density genomic markers tested increases, however, so does the number of loci associated with disease by chance. Performing a brute-force test for the interaction of four or more high-density genomic loci is unfeasible given the current computational limitations. Heuristics must be employed to limit the number of statistical tests performed. In this paper we explore the use of biological domain knowledge to supplement statistical analysis and data mining methods to identify genes and pathways associated with disease. We describe Pathway/SNP, a software application designed to help evaluate the association between pathways and disease. Pathway/SNP integrates domain knowledge--SNP, gene and pathway annotation from multiple sources--with statistical and data mining algorithms into a tool that can be used to explore the etiology of complex diseases.

摘要

全基因组关联研究有助于确定疾病的多基因贡献。然而,随着所检测的高密度基因组标记数量的增加,因偶然因素与疾病相关的基因座数量也会增加。鉴于目前的计算限制,对四个或更多高密度基因组位点的相互作用进行强力测试是不可行的。必须采用启发式方法来限制所执行的统计测试数量。在本文中,我们探索利用生物领域知识来补充统计分析和数据挖掘方法,以识别与疾病相关的基因和通路。我们描述了Pathway/SNP,这是一款旨在帮助评估通路与疾病之间关联的软件应用程序。Pathway/SNP将领域知识(来自多个来源的SNP、基因和通路注释)与统计和数据挖掘算法整合到一个工具中,可用于探索复杂疾病的病因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验