Atamna Hani, Frey William H
Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609-1673, USA.
Mitochondrion. 2007 Sep;7(5):297-310. doi: 10.1016/j.mito.2007.06.001. Epub 2007 Jun 13.
Several studies have demonstrated aberrations in the Electron Transport Complexes (ETC) and Krebs (TCA) cycle in Alzheimer's disease (AD) brain. Optimal activity of these key metabolic pathways depends on several redox active centers and metabolites including heme, coenzyme Q, iron-sulfur, vitamins, minerals, and micronutrients. Disturbed heme metabolism leads to increased aberrations in the ETC (loss of complex IV), dimerization of APP, free radical production, markers of oxidative damage, and ultimately cell death all of which represent key cytopathologies in AD. The mechanism of mitochondrial dysfunction in AD is controversial. The observations that Abeta is found both in the cells and in the mitochondria and that Abeta binds with heme may provide clues to this mechanism. Mitochondrial Abeta may interfere with key metabolites or metabolic pathways in a manner that overwhelms the mitochondrial mechanisms of repair. Identifying the molecular mechanism for how Abeta interferes with mitochondria and that explains the established key cytopathologies in AD may also suggest molecular targets for therapeutic interventions. Below we review recent studies describing the possible role of Abeta in altered energy production through heme metabolism. We further discuss how protecting mitochondria could confer resistance to oxidative and environmental insults. Therapies targeted at protecting mitochondria may improve the clinical outcome of AD patients.
多项研究表明,阿尔茨海默病(AD)患者大脑中的电子传递复合体(ETC)和克雷布斯(TCA)循环存在异常。这些关键代谢途径的最佳活性取决于多个氧化还原活性中心和代谢物,包括血红素、辅酶Q、铁硫簇、维生素、矿物质和微量营养素。血红素代谢紊乱会导致ETC异常增加(复合体IV缺失)、淀粉样前体蛋白(APP)二聚化、自由基产生、氧化损伤标志物,最终导致细胞死亡,所有这些都是AD的关键细胞病理学特征。AD中线粒体功能障碍的机制存在争议。在细胞和线粒体中均发现β-淀粉样蛋白(Aβ)且Aβ与血红素结合这一观察结果可能为该机制提供线索。线粒体Aβ可能以一种压倒线粒体修复机制的方式干扰关键代谢物或代谢途径。确定Aβ如何干扰线粒体并解释AD中已确定的关键细胞病理学特征的分子机制,也可能为治疗干预提供分子靶点。以下我们综述了近期描述Aβ通过血红素代谢改变能量产生的可能作用的研究。我们进一步讨论了保护线粒体如何赋予对氧化和环境损伤的抗性。针对保护线粒体的疗法可能会改善AD患者的临床结局。