Suppr超能文献

混合导电的SrFe(Al)O₃-δ-SrAl₂O₄复合材料上的甲烷氧化反应

Methane oxidation over mixed-conducting SrFe(Al)O3-delta-SrAl2O4 composite.

作者信息

Yaremchenko A A, Kharton V V, Valente A A, Veniaminov S A, Belyaev V D, Sobyanin V A, Marques F M B

机构信息

Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, 3810-193, Aveiro, Portugal.

出版信息

Phys Chem Chem Phys. 2007 Jun 7;9(21):2744-52. doi: 10.1039/b617409b. Epub 2007 Mar 9.

Abstract

The steady-state CH4 conversion by oxygen permeating through mixed-conducting (SrFe)0.7(SrAl2)0.3Oz composite membranes, comprising strontium-deficient SrFe(Al)O3-delta perovskite and monoclinic SrAl2O4-based phases, occurs via different mechanisms in comparison to the dry methane interaction with the lattice oxygen. The catalytic behavior of powdered (SrFe)0.7(SrAl2)0.3Oz, studied by temperature-programmed reduction in dry CH4 at 523-1073 K, is governed by the level of oxygen nonstoichiometry in the crystal lattice of the perovskite component and is qualitatively similar to that of other perovskite-related ferrites, such as Sr0.7La0.3Fe0.8Al0.2O3-delta. While extensive oxygen release from the ferrite lattice at 700-900 K leads to predominant total oxidation of methane, significant selectivity to synthesis gas formation, with H2/CO ratios close to 2, is observed above 1000 K, when a critical value of oxygen deficiency is achieved. The steady-state oxidation over dense membranes at 1123-1223 K results, however, in prevailing total combustion, particularly due to excessive oxygen chemical potential at the membrane surface. In combination with surface-limited oxygen permeability, mass transport limitations in a porous layer at the membrane permeate side prevent reduction and enable stable operation of (SrFe)0.7(SrAl2)0.3Oz membranes under air/methane gradient. Taking into account the catalytic activity of SrFeO3-delta-based phases for the partial oxidation of methane to synthesis gas and the important role of mass transport-related effects, one promising approach for membrane development is the fabrication of thick layer of porous ferrite-based catalyst at the surface of dense (SrFe)0.7(SrAl2)0.3Oz composite.

摘要

氧气透过混合导电的(SrFe)0.7(SrAl2)0.3Oz复合膜(包含缺锶的SrFe(Al)O3-δ钙钛矿和单斜晶系SrAl2O4基相)实现的稳态CH4转化,与干燥甲烷与晶格氧的相互作用相比,其发生机制不同。通过在523 - 1073K的干燥CH4中进行程序升温还原研究的粉末状(SrFe)0.7(SrAl2)0.3Oz的催化行为,受钙钛矿组分晶格中氧非化学计量比水平的控制,并且在性质上与其他与钙钛矿相关的铁氧体(如Sr0.7La0.3Fe0.8Al0.2O3-δ)相似。虽然在700 - 900K时铁氧体晶格中大量的氧释放导致甲烷主要发生完全氧化,但当达到氧缺陷的临界值时,在1000K以上观察到对合成气形成具有显著选择性,H2/CO比接近2。然而,在1123 - 1223K时致密膜上的稳态氧化导致主要发生完全燃烧,特别是由于膜表面过高的氧化学势。结合表面受限的氧渗透性,膜渗透侧多孔层中的传质限制阻止了还原,并使(SrFe)0.7(SrAl2)0.3Oz膜在空气/甲烷梯度下能够稳定运行。考虑到基于SrFeO3-δ相的甲烷部分氧化为合成气的催化活性以及传质相关效应的重要作用,一种有前景的膜开发方法是在致密的(SrFe)0.7(SrAl2)0.3Oz复合材料表面制备厚层多孔铁氧体基催化剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验