Suppr超能文献

使用统计数据挖掘的肽疫苗模型

Peptide vaccine models using statistical data mining.

作者信息

Joshi Rajani R

机构信息

Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.

出版信息

Protein Pept Lett. 2007;14(6):536-42. doi: 10.2174/092986607780990000.

Abstract

Design and synthesis of peptide vaccines is of significant pharmaceutical importance. A knowledge based statistical model is fitted here for prediction of binding of an antigenic site of a protein or a B-cell epitope on a CDR (complementarity determining region) of an immunoglobulin. Linear analogues of the 3D structure of the epitopes are computed using this model. Extension for prediction of peptide epitopes from the protein sequence alone is also presented. Validation results show promising potential of this approach in computer-aided peptide vaccine production. The computed probabilities of binding also provide a pioneering approach for ab-initio prediction of 'potency' of protein or peptide vaccines modeled by this method.

摘要

肽疫苗的设计与合成具有重大的药学意义。本文构建了一个基于知识的统计模型,用于预测蛋白质的抗原位点或免疫球蛋白互补决定区(CDR)上的B细胞表位的结合情况。利用该模型计算表位三维结构的线性类似物。还介绍了仅从蛋白质序列预测肽表位的扩展方法。验证结果表明,该方法在计算机辅助肽疫苗生产中具有广阔的应用前景。计算得到的结合概率也为用该方法建模的蛋白质或肽疫苗“效力”的从头预测提供了一种开创性的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验