Suppr超能文献

微生物群落中的双组分系统:生成和分析宏基因组数据集的方法与资源

Two-component systems in microbial communities: approaches and resources for generating and analyzing metagenomic data sets.

作者信息

Podar Mircea

机构信息

Department of Biology, Portland State University, Portland, Oregon, USA.

出版信息

Methods Enzymol. 2007;422:32-46. doi: 10.1016/S0076-6879(06)22002-0.

Abstract

Two-component signal transduction represents the main mechanism by which bacterial cells interact with their environment. The functional diversity of two-component systems and their relative importance in the different taxonomic groups and ecotypes of bacteria has become evident with the availability of several hundred genomic sequences. The vast majority of bacteria, including many high rank taxonomic units, while being components of complex microbial communities remain uncultured (i.e., have not been isolated or grown in the laboratory). Environmental genomic data from such communities are becoming available, and in addition to its profound impact on microbial ecology it will propel molecular biological disciplines beyond the traditional model organisms. This chapter describes the general approaches used in generating environmental genomic data and how that data can be used to advance the study of two component-systems and signal transduction in general.

摘要

双组分信号转导是细菌细胞与环境相互作用的主要机制。随着数百个基因组序列的可得,双组分系统的功能多样性及其在不同细菌分类群和生态型中的相对重要性已变得明显。绝大多数细菌,包括许多高级分类单元,作为复杂微生物群落的组成部分仍未被培养(即尚未在实验室中分离或培养)。来自此类群落的环境基因组数据正变得可得,并且除了对微生物生态学有深远影响外,它还将推动分子生物学学科超越传统模式生物。本章描述了生成环境基因组数据所使用的一般方法,以及该数据如何总体上用于推进双组分系统和信号转导的研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验