Suppr超能文献

Chromosome segregation in Escherichia coli division: a free energy-driven string model.

作者信息

Fan J, Tuncay K, Ortoleva P J

机构信息

Center for Cell and Virus Theory, Indiana University, Bloomington, IN 47405, USA.

出版信息

Comput Biol Chem. 2007 Aug;31(4):257-64. doi: 10.1016/j.compbiolchem.2007.05.003. Epub 2007 May 22.

Abstract

Although the mechanisms of eukaryotic chromosome segregation and cell division have been elucidated to a certain extent, those for bacteria remain largely unknown. Here we present a computational string model for simulating the dynamics of Escherichia coli chromosome segregation. A novel thermal-average force field accounting for stretching, bending, volume exclusion, friction and random fluctuation is introduced. A Langevin equation is used to simulate the chromosome structural changes. The mechanism of chromosome segregation is thereby postulated as a result of free energy-driven structural optimization with replication introduced chromosomal mass increase. Predictions of the model agree well with observations of fluorescence labeled chromosome loci movement in living cells. The results demonstrate the possibility of a mechanism of chromosome segregation that does not involve cytoskeletal guidance or advanced apparatus in an E. coli cell. The model also shows that DNA condensation of locally compacted domains is a requirement for successful chromosome segregation. Simulations also imply that the shape-determining protein MreB may play a role in the segregation via modification of the membrane pressure.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验