Kim Shinuk, Kim Junil, Cho Kwang-Hyun
Bio-MAX Institute, Seoul National University, Gwanak-gu, Seoul 151-818, Republic of Korea.
Comput Biol Chem. 2007 Aug;31(4):239-45. doi: 10.1016/j.compbiolchem.2007.03.013. Epub 2007 Apr 6.
Ordinary differential equations (ODE) have been widely used for modeling and analysis of dynamic gene networks in systems biology. In this paper, we propose an optimization method that can infer a gene regulatory network from time-series gene expression data. Specifically, the following four cases are considered: (1) reconstruction of a gene network from synthetic gene expression data with noise, (2) reconstruction of a gene network from synthetic gene expression data with time-delay, (3) reconstruction of a gene network from synthetic gene expression data with noise and time-delay, and (4) reconstruction of a gene network from experimental time-series data in budding yeast cell cycle.
常微分方程(ODE)已被广泛应用于系统生物学中动态基因网络的建模与分析。在本文中,我们提出了一种优化方法,该方法能够从时间序列基因表达数据推断基因调控网络。具体而言,我们考虑了以下四种情况:(1)从带有噪声的合成基因表达数据重建基因网络;(2)从带有时间延迟的合成基因表达数据重建基因网络;(3)从带有噪声和时间延迟的合成基因表达数据重建基因网络;(4)从芽殖酵母细胞周期的实验时间序列数据重建基因网络。