Suppr超能文献

使用套索回归和非线性基函数对基因网络进行逆向工程。

Reverse engineering of gene networks with LASSO and nonlinear basis functions.

作者信息

Gustafsson Mika, Hörnquist Michael, Lundström Jesper, Björkegren Johan, Tegnér Jesper

机构信息

Department of Science and Technology, Linköping University, Norrköping, Sweden.

出版信息

Ann N Y Acad Sci. 2009 Mar;1158:265-75. doi: 10.1111/j.1749-6632.2008.03764.x.

Abstract

The quest to determine cause from effect is often referred to as reverse engineering in the context of cellular networks. Here we propose and evaluate an algorithm for reverse engineering a gene regulatory network from time-series and steady-state data. Our algorithmic pipeline, which is rather standard in its parts but not in its integrative composition, combines ordinary differential equations, parameter estimations by least angle regression, and cross-validation procedures for determining the in-degrees and selection of nonlinear transfer functions. The result of the algorithm is a complete directed network, in which each edge has been assigned a score from a bootstrap procedure. To evaluate the performance, we submitted the outcome of the algorithm to the reverse engineering assessment competition DREAM2, where we used the data corresponding to the InSilico1 and InSilico2 networks as input. Our algorithm outperformed all other algorithms when inferring one of the directed gene-to-gene networks.

摘要

在细胞网络的背景下,从结果确定原因的探索通常被称为逆向工程。在此,我们提出并评估一种用于从时间序列和稳态数据逆向工程基因调控网络的算法。我们的算法流程,其各个部分相当标准,但整体组合并非如此,它结合常微分方程、通过最小角回归进行参数估计以及用于确定入度和选择非线性传递函数的交叉验证程序。该算法的结果是一个完整的有向网络,其中每条边都通过自展程序被赋予了一个分数。为了评估性能,我们将算法的结果提交到逆向工程评估竞赛DREAM2,在那里我们使用与InSilico1和InSilico2网络相对应的数据作为输入。在推断有向基因到基因网络之一时,我们的算法优于所有其他算法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验