Cannataro Mario, Cuda Giovanni, Gaspari Marco, Greco Sergio, Tradigo Giuseppe, Veltri Pierangelo
Bioinformatics Laboratory, Experimental and Clinical Medicine Department, Magna Graecia University, Catanzaro, Italy.
BMC Bioinformatics. 2007 Jul 15;8:255. doi: 10.1186/1471-2105-8-255.
Isotope-coded affinity tags (ICAT) is a method for quantitative proteomics based on differential isotopic labeling, sample digestion and mass spectrometry (MS). The method allows the identification and relative quantification of proteins present in two samples and consists of the following phases. First, cysteine residues are either labeled using the ICAT Light or ICAT Heavy reagent (having identical chemical properties but different masses). Then, after whole sample digestion, the labeled peptides are captured selectively using the biotin tag contained in both ICAT reagents. Finally, the simplified peptide mixture is analyzed by nanoscale liquid chromatography-tandem mass spectrometry (LC-MS/MS). Nevertheless, the ICAT LC-MS/MS method still suffers from insufficient sample-to-sample reproducibility on peptide identification. In particular, the number and the type of peptides identified in different experiments can vary considerably and, thus, the statistical (comparative) analysis of sample sets is very challenging. Low information overlap at the peptide and, consequently, at the protein level, is very detrimental in situations where the number of samples to be analyzed is high.
We designed a method for improving the data processing and peptide identification in sample sets subjected to ICAT labeling and LC-MS/MS analysis, based on cross validating MS/MS results. Such a method has been implemented in a tool, called EIPeptiDi, which boosts the ICAT data analysis software improving peptide identification throughout the input data set. Heavy/Light (H/L) pairs quantified but not identified by the MS/MS routine, are assigned to peptide sequences identified in other samples, by using similarity criteria based on chromatographic retention time and Heavy/Light mass attributes. EIPeptiDi significantly improves the number of identified peptides per sample, proving that the proposed method has a considerable impact on the protein identification process and, consequently, on the amount of potentially critical information in clinical studies. The EIPeptiDi tool is available at http://bioingegneria.unicz.it/~veltri/projects/eipeptidi/ with a demo data set.
EIPeptiDi significantly increases the number of peptides identified and quantified in analyzed samples, thus reducing the number of unassigned H/L pairs and allowing a better comparative analysis of sample data sets.
同位素编码亲和标签(ICAT)是一种基于差异同位素标记、样品消化和质谱分析(MS)的定量蛋白质组学方法。该方法可用于鉴定和相对定量两个样品中存在的蛋白质,包括以下几个阶段。首先,使用ICAT轻试剂或ICAT重试剂(具有相同化学性质但质量不同)对半胱氨酸残基进行标记。然后,在对整个样品进行消化后,使用两种ICAT试剂中都含有的生物素标签选择性地捕获标记的肽段。最后,通过纳米级液相色谱-串联质谱(LC-MS/MS)分析简化后的肽混合物。然而,ICAT LC-MS/MS方法在肽段鉴定方面的样品间重现性仍然不足。特别是,在不同实验中鉴定出的肽段数量和类型可能有很大差异,因此,对样本集进行统计(比较)分析非常具有挑战性。在肽段水平以及因此在蛋白质水平上的低信息重叠,在需要分析大量样本的情况下非常不利。
我们基于交叉验证MS/MS结果,设计了一种用于改进经过ICAT标记和LC-MS/MS分析的样本集中数据处理和肽段鉴定的方法。这种方法已在一个名为EIPeptiDi的工具中实现,该工具增强了ICAT数据分析软件,从而在整个输入数据集中改进肽段鉴定。通过使用基于色谱保留时间和重/轻质量属性的相似性标准,将MS/MS程序定量但未鉴定的重/轻(H/L)对分配给在其他样品中鉴定出的肽序列。EIPeptiDi显著提高了每个样品中鉴定出的肽段数量,证明所提出的方法对蛋白质鉴定过程有相当大的影响,因此对临床研究中潜在关键信息的数量也有相当大的影响。EIPeptiDi工具可在http://bioingegneria.unicz.it/~veltri/projects/eipeptidi/ 上获取,并带有一个演示数据集。
EIPeptiDi显著增加了在分析样品中鉴定和定量的肽段数量,从而减少了未分配的H/L对的数量,并允许对样本数据集进行更好的比较分析。