Bouyssié David, Gonzalez de Peredo Anne, Mouton Emmanuelle, Albigot Renaud, Roussel Lucie, Ortega Nathalie, Cayrol Corinne, Burlet-Schiltz Odile, Girard Jean-Philippe, Monsarrat Bernard
Laboratoire de Protéomique et Spectrométrie de Masse des Biomolécules, Equipe Labellisée Ligue 2006, Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, 205 route de Narbonne, 31077, Toulouse, France.
Mol Cell Proteomics. 2007 Sep;6(9):1621-37. doi: 10.1074/mcp.T600069-MCP200. Epub 2007 May 28.
Proteomics strategies based on nanoflow (nano-) LC-MS/MS allow the identification of hundreds to thousands of proteins in complex mixtures. When combined with protein isotopic labeling, quantitative comparison of the proteome from different samples can be achieved using these approaches. However, bioinformatics analysis of the data remains a bottleneck in large scale quantitative proteomics studies. Here we present a new software named Mascot File Parsing and Quantification (MFPaQ) that easily processes the results of the Mascot search engine and performs protein quantification in the case of isotopic labeling experiments using either the ICAT or SILAC (stable isotope labeling with amino acids in cell culture) method. This new tool provides a convenient interface to retrieve Mascot protein lists; sort them according to Mascot scoring or to user-defined criteria based on the number, the score, and the rank of identified peptides; and to validate the results. Moreover the software extracts quantitative data from raw files obtained by nano-LC-MS/MS, calculates peptide ratios, and generates a non-redundant list of proteins identified in a multisearch experiment with their calculated averaged and normalized ratio. Here we apply this software to the proteomics analysis of membrane proteins from primary human endothelial cells (ECs), a cell type involved in many physiological and pathological processes including chronic inflammatory diseases such as rheumatoid arthritis. We analyzed the EC membrane proteome and set up methods for quantitative analysis of this proteome by ICAT labeling. EC microsomal proteins were fractionated and analyzed by nano-LC-MS/MS, and database searches were performed with Mascot. Data validation and clustering of proteins were performed with MFPaQ, which allowed identification of more than 600 unique proteins. The software was also successfully used in a quantitative differential proteomics analysis of the EC membrane proteome after stimulation with a combination of proinflammatory mediators (tumor necrosis factor-alpha, interferon-gamma, and lymphotoxin alpha/beta) that resulted in the identification of a full spectrum of EC membrane proteins regulated by inflammation.
基于纳流(nano-)液相色谱-串联质谱(LC-MS/MS)的蛋白质组学策略能够鉴定复杂混合物中的数百至数千种蛋白质。当与蛋白质同位素标记相结合时,使用这些方法可以实现对来自不同样品的蛋白质组进行定量比较。然而,数据的生物信息学分析仍然是大规模定量蛋白质组学研究的一个瓶颈。在此,我们展示了一款名为 Mascot 文件解析与定量(MFPaQ)的新软件,它能够轻松处理 Mascot 搜索引擎的结果,并在使用同位素标记实验(采用 ICAT 或 SILAC(细胞培养中氨基酸稳定同位素标记)方法)的情况下进行蛋白质定量。这个新工具提供了一个便捷的界面来检索 Mascot 蛋白质列表;根据 Mascot 评分或基于鉴定肽段的数量、得分和排名的用户定义标准对它们进行排序;并验证结果。此外,该软件从通过纳流 LC-MS/MS 获得的原始文件中提取定量数据,计算肽段比率,并生成在多次搜索实验中鉴定出的蛋白质的非冗余列表以及它们计算得到的平均和标准化比率。在此,我们将该软件应用于原代人内皮细胞(EC)膜蛋白的蛋白质组学分析,内皮细胞是一种参与许多生理和病理过程(包括类风湿关节炎等慢性炎症性疾病)的细胞类型。我们分析了 EC 膜蛋白质组,并建立了通过 ICAT 标记对该蛋白质组进行定量分析的方法。对 EC 微粒体蛋白进行分级分离并通过纳流 LC-MS/MS 进行分析,然后使用 Mascot 进行数据库搜索。使用 MFPaQ 进行数据验证和蛋白质聚类,从而鉴定出 600 多种独特的蛋白质。该软件还成功用于对 EC 膜蛋白质组在用促炎介质(肿瘤坏死因子-α、干扰素-γ 和淋巴毒素α/β)组合刺激后的定量差异蛋白质组学分析,这使得能够鉴定出受炎症调节的完整 EC 膜蛋白谱。