Suppr超能文献

通过最小化条件局部熵实现图谱到图像的非刚性配准。

Atlas-to-image non-rigid registration by minimization of conditional local entropy.

作者信息

D'Agostino Emiliano, Maes Frederik, Vandermeulen Dirk, Suetens Paul

机构信息

Katholieke Universiteit Leuven, Faculties of Medicine and Engineering, Medical Imaging Center (Radiology - ESAT/PSI), University Hospital Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium.

出版信息

Inf Process Med Imaging. 2007;20:320-32. doi: 10.1007/978-3-540-73273-0_27.

Abstract

In this paper an algorithm for atlas-to-image non-rigid registration based on regional entropy minimization is presented. Tissue class probabilities in the atlas are registered with the intensities in the target image. The novel aspect of the paper consists in using tissue class probability maps that include the three main regions (for the brain, white matter, gray matter and csf) and a further partitioning thereof. For example, gray matter is further subdivided into basal ganglia (each of them defining its own class) and the rest (of gray matter). This guarantees a regional entropy minimization instead of just a global one. In other words, the local labels in the atlas will be adjusted in order to obtain the best explanation for the intensity distribution in the corresponding subregion of the target image.

摘要

本文提出了一种基于区域熵最小化的图谱到图像非刚性配准算法。图谱中的组织类别概率与目标图像中的强度进行配准。本文的新颖之处在于使用了组织类别概率图,该图包括三个主要区域(针对大脑、白质、灰质和脑脊液)及其进一步划分。例如,灰质进一步细分为基底神经节(每个基底神经节定义其自己的类别)和其余部分(灰质)。这保证了区域熵最小化,而不仅仅是全局熵最小化。换句话说,将调整图谱中的局部标签,以便为目标图像相应子区域中的强度分布获得最佳解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验