Suppr超能文献

一种用于成对配准的边缘化最大后验概率方法和期望最大化优化

A marginalized MAP approach and EM optimization for pair-wise registration.

作者信息

Zöllei Lilla, Jenkinson Mark, Timoner Samson, Wells William

机构信息

A. A. Martinos Center, MGH, USA.

出版信息

Inf Process Med Imaging. 2007;20:662-74. doi: 10.1007/978-3-540-73273-0_55.

Abstract

We formalize the pair-wise registration problem in a maximum a posteriori (MAP) framework that employs a multinomial model of joint intensities with parameters for which we only have a prior distribution. To obtain an MAP estimate of the aligning transformation alone, we treat the multinomial parameters as nuisance parameters, and marginalize them out. If the prior on those is uninformative, the marginalization leads to registration by minimization of joint entropy. With an informative prior, the marginalization leads to minimization of the entropy of the data pooled with pseudo observations from the prior. In addition, we show that the marginalized objective function can be optimized by the Expectation-Maximization (EM) algorithm, which yields a simple and effective iteration for solving entropy-based registration problems. Experimentally, we demonstrate the effectiveness of the resulting EM iteration for rapidly solving a challenging intra-operative registration problem.

摘要

我们在最大后验概率(MAP)框架中形式化成对配准问题,该框架采用联合强度的多项式模型,其参数我们仅有先验分布。为了单独获得对齐变换的MAP估计,我们将多项式参数视为干扰参数,并将它们边缘化。如果这些参数的先验信息不充分,边缘化会导致通过最小化联合熵进行配准。对于有信息先验,边缘化会导致最小化与来自先验的伪观测合并的数据的熵。此外,我们表明边缘化后的目标函数可以通过期望最大化(EM)算法进行优化,该算法为解决基于熵的配准问题提供了一种简单有效的迭代方法。通过实验,我们证明了所得EM迭代对于快速解决具有挑战性的术中配准问题的有效性。

相似文献

5
Maximum a posteriori local histogram estimation for image registration.用于图像配准的最大后验局部直方图估计
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):163-70. doi: 10.1007/11566489_21.
6
Geometry driven volumetric registration.几何驱动的体积配准
Inf Process Med Imaging. 2007;20:675-86. doi: 10.1007/978-3-540-73273-0_56.
7
The role of non-overlap in image registration.非重叠在图像配准中的作用。
Inf Process Med Imaging. 2005;19:713-24. doi: 10.1007/11505730_59.
8
Learning best features for deformable registration of MR brains.学习用于磁共振脑图像可变形配准的最佳特征。
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):179-87. doi: 10.1007/11566489_23.

引用本文的文献

2
Non-Rigid Image Registration Using Gaussian Mixture Models.使用高斯混合模型的非刚性图像配准
Biomed Image Registration. 2012;7359:286-295. doi: 10.1007/978-3-642-31340-0_30.
4
Feature-based alignment of volumetric multi-modal images.基于特征的容积多模态图像对齐
Inf Process Med Imaging. 2013;23:25-36. doi: 10.1007/978-3-642-38868-2_3.
6
Image-driven population analysis through mixture modeling.通过混合模型进行图像驱动的群体分析。
IEEE Trans Med Imaging. 2009 Sep;28(9):1473-87. doi: 10.1109/TMI.2009.2017942. Epub 2009 Mar 24.
7
Atlas stratification.图谱分层。
Med Image Anal. 2007 Oct;11(5):443-57. doi: 10.1016/j.media.2007.07.001. Epub 2007 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验