Suppr超能文献

基于散度的扩散张量聚类、插值和正则化框架。

Divergence-based framework for diffusion tensor clustering, interpolation, and regularization.

作者信息

Rohlfing Torsten, Sullivan Edith V, Pfefferbaum Adolf

机构信息

Neuroscience Program, SRI International, Menlo Park, CA, USA.

出版信息

Inf Process Med Imaging. 2007;20:507-18. doi: 10.1007/978-3-540-73273-0_42.

Abstract

This paper introduces a novel framework for diffusion tensor combination, which can be used for tensor averaging, clustering, interpolation, and regularization. The framework is based on the physical interpretation of the tensors as the covariance matrices of Gaussian probability distributions. The symmetric Kullback-Leibler divergence provides a natural distance measure on these distributions, which leads to a closed-form expression for the distance between any two diffusion tensors, as well as for the weighted average of an arbitrary number of tensors. We illustrate the application of our technique in four different scenarios: (a) to combine tensor data from multiple subjects and generate population atlases from ten young and ten older subjects, (b) to perform k-means clustering and generate a compact Gaussian mixture of multiple tensors, (c) to interpolate between tensors, and (d) to regularize (i.e., smooth) noisy tensor data. For boundary-preserving regularization, we also propose a non-linear two-stage smoothing algorithm that can be considered remotely similar to a median filter.

摘要

本文介绍了一种用于扩散张量组合的新颖框架,该框架可用于张量平均、聚类、插值和正则化。该框架基于将张量解释为高斯概率分布的协方差矩阵这一物理概念。对称的库尔贝克-莱布勒散度为这些分布提供了一种自然的距离度量,这导致了任意两个扩散张量之间距离以及任意数量张量加权平均值的闭式表达式。我们在四种不同场景中展示了我们技术的应用:(a) 组合来自多个受试者的张量数据,并从十名年轻受试者和十名年长受试者生成群体图谱;(b) 执行k均值聚类并生成多个张量的紧凑高斯混合;(c) 在张量之间进行插值;以及(d) 对有噪声的张量数据进行正则化(即平滑)。对于保边界正则化,我们还提出了一种非线性两阶段平滑算法,该算法可被认为在某种程度上类似于中值滤波器。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验