Suppr超能文献

用于扩散张量磁共振成像正则化的黎曼图扩散

Riemannian graph diffusion for DT-MRI regularization.

作者信息

Zhang Fan, Hancock Edwin R

机构信息

Department of Computer Science, University of York, York, UK.

出版信息

Med Image Comput Comput Assist Interv. 2006;9(Pt 2):234-42. doi: 10.1007/11866763_29.

Abstract

A new method for diffusion tensor MRI (DT-MRI) regularization is presented that relies on graph diffusion. We represent a DT image using a weighted graph, where the weights of edges are functions of the geodesic distances between tensors. Diffusion across this graph with time is captured by the heat-equation, and the solution, i.e. the heat kernel, is found by exponentiating the Laplacian eigen-system with time. Tensor regularization is accomplished by computing the Riemannian weighted mean using the heat kernel as its weights. The method can efficiently remove noise, while preserving the fine details of images. Experiments on synthetic and real-world datasets illustrate the effectiveness of the method.

摘要

提出了一种基于图扩散的扩散张量磁共振成像(DT-MRI)正则化新方法。我们使用加权图来表示DT图像,其中边的权重是张量之间测地距离的函数。通过热方程捕捉该图随时间的扩散,通过对拉普拉斯特征系统随时间进行指数运算来找到解,即热核。通过使用热核作为权重计算黎曼加权平均值来实现张量正则化。该方法可以有效地去除噪声,同时保留图像的精细细节。在合成数据集和真实世界数据集上的实验说明了该方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验