Suppr超能文献

家族数据分析中多变量二元性状的协方差分量模型

Covariance component models for multivariate binary traits in family data analysis.

作者信息

Yip Benjamin H, Björk Camilla, Lichtenstein Paul, Hultman Christina M, Pawitan Yudi

机构信息

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobelvgen 12, Stockholm, Sweden.

出版信息

Stat Med. 2008 Mar 30;27(7):1086-105. doi: 10.1002/sim.2996.

Abstract

For family studies, there is now an established analytical framework for binary-trait outcomes within the generalized linear mixed models (GLMMs). However, the corresponding analysis of multivariate binary-trait (MBT) outcomes is still limited. Certain diseases, such as schizophrenia and bipolar disorder, have similarities in epidemiological features, risk factor patterns and intermediate phenotypes. To have a better etiological understanding, it is important to investigate the common genetic and environmental factors driving the comorbidity of the diseases. In this paper, we develop a suitable GLMM for MBT outcomes from extended families, such as nuclear, paternal- and maternal-halfsib families. We motivate our problem with real questions from psychiatric epidemiology and demonstrate how different substantive issues of comorbidity between two diseases can be put into the analytical framework.

摘要

对于家族研究而言,广义线性混合模型(GLMMs)中二元性状结果的分析框架现已确立。然而,多元二元性状(MBT)结果的相应分析仍然有限。某些疾病,如精神分裂症和双相情感障碍,在流行病学特征、风险因素模式和中间表型方面存在相似之处。为了更好地理解病因,研究驱动这些疾病共病的共同遗传和环境因素很重要。在本文中,我们为核心家庭、父系和母系半同胞家庭等大家庭的MBT结果开发了一种合适的GLMM。我们用精神疾病流行病学中的实际问题引出我们的问题,并展示了两种疾病共病的不同实质性问题如何纳入分析框架。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验