Naftolin Frederick, Garcia-Segura Luis Miguel, Horvath Tamas L, Zsarnovszky Attila, Demir Necdet, Fadiel Ahmed, Leranth Csaba, Vondracek-Klepper Susanne, Lewis Carole, Chang Aimee, Parducz Arpad
Reproductive Neuroscience Unit, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA.
Reprod Sci. 2007 Feb;14(2):101-16. doi: 10.1177/1933719107301059.
Proper gonadal function requires coordinated (feedback) interactions between the gonads, adenohypophysis, and brain: the gonads elaborate sex steroids (progestins, androgens, and estrogens) and proteins (inhibin-activin family) during gamete development. In both sexes, the brain-pituitary gonadotrophin-regulating interaction is coordinated by estradiol through its opposing actions on pituitary gonadotrophs (sensitization of the response to gonadotrophin-releasing hormone [GnRH]) versus hypothalamic neurons (inhibition of GnRH secretion). This dynamic tension between the gonadotrophs and the GnRH cells in the brain regulates the circulating gonadotrophins and is termed reciprocal/negative feedback. In females, reciprocal/negative feedback dominates approximately 90% of the ovarian cycle. In a spectacular exception, the dynamic tension is broken during the surge of circulating estrogen that marks follicle and oocyte(s) maturation. The cause is an estradiol-induced disinhibition of the GnRH neurons that releases GnRH secretion to the highly sensitized pituitary gonadotrophs that in turn release the gonadotrophin surge (the estrogen-induced gonadotrophin surge [EIGS], also known as positive feedback). Studies during the past 4 decades have shown this disinhibition to result from estrogen-induced synaptic plasticity (EISP), including a reversible approximately 50% loss in arcuate nucleus synapses. The disinhibited GnRH secretion occurs during maximal gonadotroph sensitization and results in the EIGS. Specific immunoneutralization of estradiol blocks the EISP and EIGS. The EISP is accompanied by increases in insulinlike growth factor 1, polysialylated neural cell adhesion molecule, and ezrin, 3 proteins that the authors believe are the links between estrogen-induced astroglial extension and the EISP that releases GnRH secretion at the moment of maximal sensitization of the pituitary gonadotrophs. The result is the paradoxical surge of gonadotrophins at the peak of ovarian estrogen secretion and the triggering of ovulation. This enhanced understanding of the mechanics of gonadotrophin control clarifies elements of the involved feedback loops and opens the way to a better understanding of the neurobiology of reproduction.
正常的性腺功能需要性腺、腺垂体和脑之间协调(反馈)相互作用:性腺在配子发育过程中产生性类固醇(孕激素、雄激素和雌激素)和蛋白质(抑制素-激活素家族)。在两性中,脑-垂体促性腺激素调节相互作用由雌二醇通过其对垂体促性腺细胞(对促性腺激素释放激素[GnRH]反应的敏化作用)与下丘脑神经元(GnRH分泌的抑制作用)的相反作用来协调。垂体促性腺细胞与脑中GnRH细胞之间的这种动态张力调节循环中的促性腺激素,称为相互/负反馈。在女性中,相互/负反馈在约90%的卵巢周期中占主导。一个显著的例外是,在标志着卵泡和卵母细胞成熟的循环雌激素激增期间,这种动态张力被打破。原因是雌二醇诱导的GnRH神经元去抑制,释放GnRH至高度敏感的垂体促性腺细胞,进而引发促性腺激素激增(雌激素诱导的促性腺激素激增[EIGS],也称为正反馈)。过去40年的研究表明,这种去抑制是由雌激素诱导的突触可塑性(EISP)导致的,包括弓状核突触约50%的可逆性丧失。去抑制的GnRH分泌发生在促性腺细胞最大敏化期间,导致EIGS。雌二醇的特异性免疫中和可阻断EISP和EIGS。EISP伴随着胰岛素样生长因子1、多唾液酸神经细胞黏附分子和埃兹蛋白的增加,作者认为这3种蛋白质是雌激素诱导的星形胶质细胞伸展与在垂体促性腺细胞最大敏化时刻释放GnRH分泌的EISP之间的联系。结果是在卵巢雌激素分泌高峰时出现矛盾的促性腺激素激增并触发排卵。对促性腺激素控制机制的这种深入理解阐明了相关反馈回路的要素,并为更好地理解生殖神经生物学开辟了道路。