Hofmann Matthias
Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
J Biol Inorg Chem. 2007 Sep;12(7):989-1001. doi: 10.1007/s00775-007-0271-5. Epub 2007 Jul 17.
Molybdenum and tungsten complexes as models for the active sites of assimilatory or dissimilatory nitrate reductases (NR) were computed at the CPCM-B98/SDDp//B3LYP/Lanl2DZp* plus zero point energy level of density functional theory. The ligands were chosen on the basis of available experimental protein or small chemical model structures. A water molecule is found to bind to assimilatory NR models (Me(2)C(2)S(2))MO(YMe) (-11.5 kcal mol(-1) for M is Mo, Y is S) and may be replaced by nitrate (-4.5 kcal mol(-1)) (but a hydroxy group may not). Nature's choice of M is Mo and Y is S for NR has the largest activation energy for protein-free models (13.3 kcal mol(-1)) and the least exothermic reaction energy for the nitrate reduction (-14.9 kcal mol(-1)) compared with M is W and Y is O or Se alternatives. Water binding to dissimilatory NR model complexes (Me(2)C(2)S(2))(2)M(YR) is considerably endothermic (10.3 kcal mol(-1)); nitrate binding is only slightly so (1.5 kcal mol(-1) for RY(-) is MeS(-)). The exchange of an oxo ligand (assimilatory NR) for a dithiolato ligand (dissimilatory NR model) reduces the exothermicity (-8.6 kcal mol(-1) relative to the fivefold-coordinate reduced complex) and raises the barrier for oxygen atom transfer (OAT) in the nitrate complex (19.2 kcal mol(-1)). Not for the mono but only for the bisdithiolato complexes hydrogen bonding involving the coordinated substrate may significantly lower the OAT barrier as shown by explicitly adding water molecules. Substitution of tungsten for molybdenum generally lowers OAT activation energies and makes nitrate reduction reaction energies more negative. Bidentate carboxylato binding identified in Escherichia coli NarGHI is the preferred binding mode also for an acetato model. However, one dithiolato ligand folds when the Mo(VI) center is bare of a good pi-donor ligand, e.g., an oxo group. Computations on (mnt)(2)Mo(IV)(YR)(PPh(3)) [mnt is (CN)(2)C(2)S(2) (2-)] gave a smaller nitrate reduction activation energy for RY(-) is Cl(-), compared with RY(-) is PhS(-), although experimentally only the phenyl thiolato complex and not the chloro complex was found to be a functional NR model.
在密度泛函理论的CPCM - B98/SDDp//B3LYP/Lanl2DZp*加上零点能水平下,计算了作为同化或异化硝酸还原酶(NR)活性位点模型的钼和钨配合物。根据现有的实验蛋白质或小分子化学模型结构选择配体。发现一个水分子与同化NR模型(Me(2)C(2)S(2))MO(YMe)结合(当M为Mo,Y为S时,结合能为 - 11.5 kcal mol(-1)),并且可能被硝酸盐取代(结合能为 - 4.5 kcal mol(-1))(但羟基不能取代)。与M为W且Y为O或Se的替代情况相比,自然界中NR选择M为Mo且Y为S时,对于无蛋白质模型具有最大的活化能(13.3 kcal mol(-1)),而对于硝酸盐还原反应具有最小的放热反应能量( - 14.9 kcal mol(-1))。水分子与异化NR模型配合物(Me(2)C(2)S(2))(2)M(YR)的结合相当吸热(10.3 kcal mol(-1));硝酸盐结合仅略微吸热(当RY(-)为MeS(-)时,结合能为1.5 kcal mol(-1))。用二硫醇盐配体(异化NR模型)取代氧代配体(同化NR)会降低放热性(相对于五配位还原配合物降低了 - 8.6 kcal mol(-1)),并提高了硝酸盐配合物中氧原子转移(OAT)的势垒(19.2 kcal mol(-1))。如通过明确添加水分子所示,对于双二硫醇盐配合物而非单二硫醇盐配合物,涉及配位底物的氢键可显著降低OAT势垒。用钨取代钼通常会降低OAT活化能,并使硝酸盐还原反应能量更负。在大肠杆菌NarGHI中鉴定出的双齿羧酸盐结合也是乙酸盐模型的优选结合模式。然而,当Mo(VI)中心没有良好的π - 供体配体(例如氧代基团)时,一个二硫醇盐配体会折叠。对(mnt)(2)Mo(IV)(YR)(PPh(3)) [mnt为(CN)(2)C(2)S(2) (2 - )]的计算表明,当RY(-)为Cl(-)时,与RY(-)为PhS(-)相比,硝酸盐还原活化能较小,尽管实验上仅发现苯基硫醇盐配合物而非氯配合物是功能性NR模型。