Joshi Hemant K, Enemark John H
Department of Chemistry, The University of Arizona, Tucson, Arizona 85721, USA.
J Am Chem Soc. 2004 Sep 29;126(38):11784-5. doi: 10.1021/ja046465x.
Density functional calculations on geometry-optimized oxidized (Mo(VI)) and reduced (Mo(IV)) analogues of the isolated active site of aldehyde oxidase (MOP), a member of the xanthine oxidase family of pyranopterindithiolate enzymes, show that fold angle changes of the dithiolate ligand modulate the relative metal and dithiolate contributions to the frontier redox orbitals. Proton abstraction from the equatorial aqua ligand of the oxidized Mo(VI) site also flattens the metal dithiolate fold angle. It is proposed that static and/or dynamic changes in the structure of the protein surrounding the active site can induce changes in the dithiolate fold angle and thereby provide a mechanism for electronic buffering of the redox orbital, for fine-tuning the nucleophilicity of the equatorial aqua/hydroxide ligand, and for modulating the electron-transfer regeneration of the active sites of molybdenum and tungsten enzymes via a "dithiolate folding effect".
黄嘌呤氧化酶家族的吡喃蝶呤二硫醇酶醛氧化酶(MOP)分离活性位点的几何优化氧化态(Mo(VI))和还原态(Mo(IV))类似物的密度泛函计算表明,二硫醇配体的折叠角变化调节了前沿氧化还原轨道中金属和二硫醇的相对贡献。从氧化态Mo(VI)位点的赤道水配体提取质子也会使金属二硫醇折叠角变平。有人提出,活性位点周围蛋白质结构的静态和/或动态变化可诱导二硫醇折叠角的变化,从而为氧化还原轨道的电子缓冲、微调赤道水/氢氧根配体的亲核性以及通过“二硫醇折叠效应”调节钼和钨酶活性位点的电子转移再生提供一种机制。