Suppr超能文献

基于分形的身体部位运动想象任务的脑电图数据分析

Fractal-based EEG data analysis of body parts movement imagery tasks.

作者信息

Phothisonothai Montri, Nakagawa Masahiro

机构信息

Chaos and Fractals Informatics Laboratory, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan.

出版信息

J Physiol Sci. 2007 Aug;57(4):217-26. doi: 10.2170/physiolsci.RP006307. Epub 2007 Jul 19.

Abstract

The objective of this study is to analyze the spontaneous electroencephalographic (EEG) data corresponding to body parts movement imagery tasks in terms of fractal properties. We proposed the six algorithms of fractal dimension (FD) estimators; box-counting algorithm, Higuchi algorithm, variance fractal algorithm, detrended fluctuation analysis, power spectral density analysis, and critical exponent analysis. The different parts of human body movement imagination such as feet, tongue, and index finger are proposed for use as the tasks in this experiment. The EEG data were recorded from three healthy subjects (2 males and 1 female). The experimental results are useful in the measurement of FD changes in EEG data and present different characteristics in terms of variability. The probability density function (PDF) is also applied to show that the FD distribution is along each electrode. This study proposes that the performances of each method can extract information from the EEG data of imagined movement.

摘要

本研究的目的是从分形特性方面分析与身体部位运动想象任务相对应的自发脑电图(EEG)数据。我们提出了六种分形维数(FD)估计器算法;盒计数算法、 Higuchi算法、方差分形算法、去趋势波动分析、功率谱密度分析和临界指数分析。本实验建议将人体运动想象的不同部位,如脚、舌头和食指用作任务。EEG数据记录自三名健康受试者(2名男性和1名女性)。实验结果有助于测量EEG数据中的FD变化,并在变异性方面呈现出不同的特征。概率密度函数(PDF)也被用于表明FD分布沿每个电极。本研究提出,每种方法的性能都可以从想象运动的EEG数据中提取信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验