Suppr超能文献

基于大样本、多样化数据集的静息态 EEG 信号对重度抑郁症的检测:系统验证

Resting-State EEG Signal for Major Depressive Disorder Detection: A Systematic Validation on a Large and Diverse Dataset.

机构信息

International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo 113-0033, Japan.

Hipposcreen Neurotech Corp. (HNC), Taipei 114, Taiwan.

出版信息

Biosensors (Basel). 2021 Dec 6;11(12):499. doi: 10.3390/bios11120499.

Abstract

Major depressive disorder (MDD) is a global healthcare issue and one of the leading causes of disability. Machine learning combined with non-invasive electroencephalography (EEG) has recently been shown to have the potential to diagnose MDD. However, most of these studies analyzed small samples of participants recruited from a single source, raising serious concerns about the generalizability of these results in clinical practice. Thus, it has become critical to re-evaluate the efficacy of various common EEG features for MDD detection across large and diverse datasets. To address this issue, we collected resting-state EEG data from 400 participants across four medical centers and tested classification performance of four common EEG features: band power (BP), coherence, Higuchi's fractal dimension, and Katz's fractal dimension. Then, a sequential backward selection (SBS) method was used to determine the optimal subset. To overcome the large data variability due to an increased data size and multi-site EEG recordings, we introduced the conformal kernel (CK) transformation to further improve the MDD as compared with the healthy control (HC) classification performance of support vector machine (SVM). The results show that (1) coherence features account for 98% of the optimal feature subset; (2) the CK-SVM outperforms other classifiers such as K-nearest neighbors (K-NN), linear discriminant analysis (LDA), and SVM; (3) the combination of the optimal feature subset and CK-SVM achieves a high five-fold cross-validation accuracy of 91.07% on the training set (140 MDD and 140 HC) and 84.16% on the independent test set (60 MDD and 60 HC). The current results suggest that the coherence-based connectivity is a more reliable feature for achieving high and generalizable MDD detection performance in real-life clinical practice.

摘要

重度抑郁症(MDD)是一个全球性的医疗保健问题,也是导致残疾的主要原因之一。机器学习结合非侵入性脑电图(EEG)最近被证明具有诊断 MDD 的潜力。然而,这些研究大多分析了从单一来源招募的小样本参与者,这严重影响了这些结果在临床实践中的可推广性。因此,重新评估各种常见 EEG 特征在大型和多样化数据集上对 MDD 检测的功效变得至关重要。为了解决这个问题,我们从四个医疗中心收集了 400 名参与者的静息态 EEG 数据,并测试了四个常见 EEG 特征的分类性能:频带功率(BP)、相干性、Higuchi 分形维数和 Katz 分形维数。然后,采用顺序后向选择(SBS)方法确定最优子集。为了克服由于数据大小增加和多站点 EEG 记录引起的大数据可变性,我们引入了保形核(CK)变换,以进一步提高支持向量机(SVM)的 MDD 与健康对照组(HC)分类性能。结果表明:(1)相干性特征占最优特征子集的 98%;(2)CK-SVM 优于其他分类器,如 K-最近邻(K-NN)、线性判别分析(LDA)和 SVM;(3)最优特征子集与 CK-SVM 的结合在训练集(140 例 MDD 和 140 例 HC)上实现了 91.07%的五重交叉验证准确率,在独立测试集(60 例 MDD 和 60 例 HC)上实现了 84.16%的准确率。目前的结果表明,基于相干性的连接性是实现现实临床实践中高且可推广的 MDD 检测性能的更可靠特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4793/8699348/f95d55fc86fd/biosensors-11-00499-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验