Malthouse J P, Finucane M D
Department of Biochemistry, University College Dublin, Belfield, Ireland.
Biochem J. 1991 Dec 15;280 ( Pt 3)(Pt 3):649-57. doi: 10.1042/bj2800649.
L-1-Chloro-4-phenyl-3-tosylamido[1-13C]butan-2-one (Tos-[1-13C]Phe-CH2Cl) and Tos-[1-13C,2H2]Phe-CH2Cl were prepared and used to alkylate delta-chymotrypsin. The relaxation parameters of the 13C-n.m.r. signal resulting from the alkylation of histidine-57 in both enzyme-inhibitor complexes were determined at 1.88 T and 6.34 T as well as the spin-lattice relaxation times of the backbone alpha-carbon atoms of the unenriched Tos-Phe-CH2-delta-chymotrypsin complex. It is concluded that the species examined do not have significant internal librational motions and that the rotational correlation time of the monomeric enzyme-inhibitor complex is 16.0 +/- 3.2 ns. The signal from the 13C-enriched atom of Tos-[1-13C,2H2]Phe-CH2Cl is split into a quintet (JCD = 23 Hz) whereas in the Tos-[1-13C,2H2]Phe-CH2-delta-chymotrypsin complex the signal from the 13C-enriched inhibitor carbon atom is decoupled. This decoupled signal had linewidths of 16 +/- 3 Hz and 52 +/- 2 Hz at 1.88 T and 6.34 T respectively, whereas linewidths at 40 +/- 2 Hz and 53 +/- 4 Hz were obtained for the same signal in the Tos-[1-13C]Phe-CH2-delta-chymotrypsin complex at 1.88 T and 6.34 T respectively. Therefore whereas deuteration produces a 2.5-fold reduction in linewidth at 1.88 T there is no significant decrease in the linewidth at 6.34 T. This result is explained by using the rigid rotor model, which predicts that the quadrupolar spin-lattice relaxation rate will be faster at low field strengths, resulting in more efficient deuterium decoupling by scalar relaxation of the second kind at lower field strengths. It is also predicted that deuterium decoupling by scalar relaxation will become less efficient as rotational correlation times increase. The consequences of these predictions for the detection of 13C-enriched atomic probes of proteins are discussed. It is also shown that a spin-echo pulse sequence can be used to remove signals due to protonated carbon atoms without attenuating the signal due to deuterated carbon atoms.
制备了L-1-氯-4-苯基-3-对甲苯磺酰胺基[1-¹³C]丁烷-2-酮(Tos-[1-¹³C]Phe-CH₂Cl)和Tos-[1-¹³C,2H₂]Phe-CH₂Cl,并用于使δ-胰凝乳蛋白酶烷基化。在1.88 T和6.34 T下测定了两种酶-抑制剂复合物中组氨酸-57烷基化产生的¹³C核磁共振信号的弛豫参数,以及未富集的Tos-Phe-CH₂-δ-胰凝乳蛋白酶复合物主链α-碳原子的自旋-晶格弛豫时间。得出的结论是,所研究的物种没有显著的内部摆动运动,单体酶-抑制剂复合物的旋转相关时间为16.0±3.2 ns。Tos-[1-¹³C,2H₂]Phe-CH₂Cl中¹³C富集原子的信号分裂为五重峰(JCD = 23 Hz),而在Tos-[1-¹³C,2H₂]Phe-CH₂-δ-胰凝乳蛋白酶复合物中,¹³C富集抑制剂碳原子的信号去耦。该去耦信号在1.88 T和6.34 T下的线宽分别为16±3 Hz和52±2 Hz,而在1.88 T和6.34 T下,Tos-[1-¹³C]Phe-CH₂-δ-胰凝乳蛋白酶复合物中相同信号的线宽分别为40±2 Hz和53±4 Hz。因此,虽然氘代在1.88 T下使线宽降低了2.5倍,但在6.34 T下,线宽没有显著降低。使用刚性转子模型解释了这一结果,该模型预测在低场强下四极自旋-晶格弛豫速率会更快,从而在较低场强下通过第二类标量弛豫实现更有效的氘去耦。还预测随着旋转相关时间的增加,通过标量弛豫进行的氘去耦效率会降低。讨论了这些预测对检测蛋白质中¹³C富集原子探针的影响。还表明,自旋回波脉冲序列可用于去除质子化碳原子产生的信号,而不会衰减氘代碳原子产生的信号。