Suppr超能文献

通过取向膜的二维核磁共振对视紫红质暗态和中间态I中视网膜发色团进行结构分析和动力学研究

Structural analysis and dynamics of retinal chromophore in dark and meta I states of rhodopsin from 2H NMR of aligned membranes.

作者信息

Struts Andrey V, Salgado Gilmar F J, Tanaka Katsunori, Krane Sonja, Nakanishi Koji, Brown Michael F

机构信息

Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA.

出版信息

J Mol Biol. 2007 Sep 7;372(1):50-66. doi: 10.1016/j.jmb.2007.03.046. Epub 2007 Mar 24.

Abstract

Rhodopsin is a prototype for G protein-coupled receptors (GPCRs) that are implicated in many biological responses in humans. A site-directed (2)H NMR approach was used for structural analysis of retinal within its binding cavity in the dark and pre-activated meta I states. Retinal was labeled with (2)H at the C5, C9, or C13 methyl groups by total synthesis, and was used to regenerate the opsin apoprotein. Solid-state (2)H NMR spectra were acquired for aligned membranes in the low-temperature lipid gel phase versus the tilt angle to the magnetic field. Data reduction assumed a static uniaxial distribution, and gave the retinylidene methyl bond orientations plus the alignment disorder (mosaic spread). The dark-state (2)H NMR structure of 11-cis-retinal shows torsional twisting of the polyene chain and the beta-ionone ring. The ligand undergoes restricted motion, as evinced by order parameters of approximately 0.9 for the spinning C-C(2)H(3) groups, with off-axial fluctuations of approximately 15 degrees . Retinal is accommodated within the rhodopsin binding pocket with a negative pre-twist about the C11=C12 double bond that explains its rapid photochemistry and the trajectory of 11-cis to trans isomerization. In the cryo-trapped meta I state, the (2)H NMR structure shows a reduction of the polyene strain, while torsional twisting of the beta-ionone ring is maintained. Distortion of the retinal conformation is interpreted through substituent control of receptor activation. Steric hindrance between trans retinal and Trp265 can trigger formation of the subsequent activated meta II state. Our results are pertinent to quantum and molecular mechanics simulations of ligands bound to GPCRs, and illustrate how (2)H NMR can be applied to study their biological mechanisms of action.

摘要

视紫红质是G蛋白偶联受体(GPCR)的一个原型,这类受体参与人体多种生物学反应。采用定点(2)H核磁共振方法对黑暗状态和预激活的间态I状态下视黄醛在其结合腔内的结构进行分析。通过全合成在视黄醛的C5、C9或C13甲基处用(2)H标记,并用其再生视蛋白脱辅基蛋白。针对低温脂质凝胶相的取向膜与磁场的倾斜角采集固态(2)H核磁共振谱。数据处理假设为静态单轴分布,得出视黄叉甲基键的取向以及取向无序(镶嵌展宽)。11 - 顺式视黄醛的暗态(2)H核磁共振结构显示多烯链和β - 紫罗兰酮环存在扭转扭曲。配体的运动受限,旋转的C - C(2)H(3)基团的序参数约为0.9,轴向偏差约为15度,这表明了这一点。视黄醛以围绕C11 = C12双键的负预扭转容纳在视紫红质结合口袋中,这解释了其快速光化学过程以及11 - 顺式到反式异构化的轨迹。在低温捕获的间态I状态下,(2)H核磁共振结构显示多烯应变减小,而β - 紫罗兰酮环的扭转扭曲得以维持。视黄醛构象的扭曲通过受体激活的取代基控制来解释。反式视黄醛与Trp265之间的空间位阻可触发随后激活的间态II状态的形成。我们的结果与结合到GPCR的配体的量子和分子力学模拟相关,并说明了(2)H核磁共振如何可用于研究它们的生物学作用机制。

相似文献

1
Structural analysis and dynamics of retinal chromophore in dark and meta I states of rhodopsin from 2H NMR of aligned membranes.
J Mol Biol. 2007 Sep 7;372(1):50-66. doi: 10.1016/j.jmb.2007.03.046. Epub 2007 Mar 24.
2
Retinal conformation and dynamics in activation of rhodopsin illuminated by solid-state H NMR spectroscopy.
Photochem Photobiol. 2009 Mar-Apr;85(2):442-53. doi: 10.1111/j.1751-1097.2008.00510.x.
3
Solid-state 2H NMR spectroscopy of retinal proteins in aligned membranes.
Biochim Biophys Acta. 2007 Dec;1768(12):2979-3000. doi: 10.1016/j.bbamem.2007.10.014. Epub 2007 Oct 23.
4
Deuterium NMR structure of retinal in the ground state of rhodopsin.
Biochemistry. 2004 Oct 12;43(40):12819-28. doi: 10.1021/bi0491191.
5
Solid-state 2H NMR structure of retinal in metarhodopsin I.
J Am Chem Soc. 2006 Aug 30;128(34):11067-71. doi: 10.1021/ja058738+.
6
Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin.
Proc Natl Acad Sci U S A. 2011 May 17;108(20):8263-8. doi: 10.1073/pnas.1014692108. Epub 2011 Apr 28.
8
Dynamic structure of retinylidene ligand of rhodopsin probed by molecular simulations.
J Mol Biol. 2007 Sep 28;372(4):906-917. doi: 10.1016/j.jmb.2007.06.047. Epub 2007 Jun 26.
9
Retinal dynamics during light activation of rhodopsin revealed by solid-state NMR spectroscopy.
Biochim Biophys Acta. 2010 Feb;1798(2):177-93. doi: 10.1016/j.bbamem.2009.08.013. Epub 2009 Aug 28.

引用本文的文献

1
Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering.
Front Chem. 2022 Jun 22;10:879609. doi: 10.3389/fchem.2022.879609. eCollection 2022.
2
Synthesis of 9-CD-9--Retinal Cofactor of Isorhodopsin.
Tetrahedron Lett. 2018 Dec 19;59(51):4521-4524. doi: 10.1016/j.tetlet.2018.11.034. Epub 2018 Nov 10.
3
Static solid-state H NMR methods in studies of protein side-chain dynamics.
Prog Nucl Magn Reson Spectrosc. 2017 Aug;101:1-17. doi: 10.1016/j.pnmrs.2017.02.001. Epub 2017 Mar 14.
5
6
SPECTRAL METHODS FOR STUDY OF THE G-PROTEIN-COUPLED RECEPTOR RHODOPSIN. I. VIBRATIONAL AND ELECTRONIC SPECTROSCOPY.
Opt Spectrosc. 2015 May;118(5):711-717. doi: 10.1134/S0030400X15050240. Epub 2015 May 27.
7
Retinal Conformation Changes Rhodopsin's Dynamic Ensemble.
Biophys J. 2015 Aug 4;109(3):608-17. doi: 10.1016/j.bpj.2015.06.046.
8
Uncovering the triggers for GPCR activation using solid-state NMR spectroscopy.
J Magn Reson. 2015 Apr;253:111-8. doi: 10.1016/j.jmr.2014.12.014.
9
Investigation of rhodopsin dynamics in its signaling state by solid-state deuterium NMR spectroscopy.
Methods Mol Biol. 2015;1271:133-58. doi: 10.1007/978-1-4939-2330-4_10.
10
Retinal ligand mobility explains internal hydration and reconciles active rhodopsin structures.
Biochemistry. 2014 Jan 21;53(2):376-85. doi: 10.1021/bi4013947. Epub 2014 Jan 8.

本文引用的文献

1
Retinal counterion switch mechanism in vision evaluated by molecular simulations.
J Am Chem Soc. 2006 Dec 27;128(51):16502-3. doi: 10.1021/ja0671971.
2
Curvature and hydrophobic forces drive oligomerization and modulate activity of rhodopsin in membranes.
Biophys J. 2006 Dec 15;91(12):4464-77. doi: 10.1529/biophysj.106.082776. Epub 2006 Sep 29.
3
Solid-state 2H NMR structure of retinal in metarhodopsin I.
J Am Chem Soc. 2006 Aug 30;128(34):11067-71. doi: 10.1021/ja058738+.
5
Location of Trp265 in metarhodopsin II: implications for the activation mechanism of the visual receptor rhodopsin.
J Mol Biol. 2006 Mar 17;357(1):163-72. doi: 10.1016/j.jmb.2005.12.046. Epub 2006 Jan 3.
6
Origin and consequences of steric strain in the rhodopsin binding pocket.
Biochemistry. 2006 Jan 24;45(3):801-10. doi: 10.1021/bi0515624.
7
Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman.
Science. 2005 Nov 11;310(5750):1006-9. doi: 10.1126/science.1118379.
8
The role of Glu181 in the photoactivation of rhodopsin.
J Mol Biol. 2005 Oct 21;353(2):345-56. doi: 10.1016/j.jmb.2005.08.039.
10
Agonists and partial agonists of rhodopsin: retinals with ring modifications.
Biochemistry. 2005 Sep 6;44(35):11684-99. doi: 10.1021/bi0508587.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验