Department of Biochemistry and Biophysics, University of Rochester Medical Center , Rochester, New York 14642, United States.
Biochemistry. 2014 Jan 21;53(2):376-85. doi: 10.1021/bi4013947. Epub 2014 Jan 8.
Rhodopsin, the mammalian dim-light receptor, is one of the best-characterized G-protein-coupled receptors, a pharmaceutically important class of membrane proteins that has garnered a great deal of attention because of the recent availability of structural information. Yet the mechanism of rhodopsin activation is not fully understood. Here, we use microsecond-scale all-atom molecular dynamics simulations, validated by solid-state (2)H nuclear magnetic resonance spectroscopy, to understand the transition between the dark and metarhodopsin I (Meta I) states. Our analysis of these simulations reveals striking differences in ligand flexibility between the two states. Retinal is much more dynamic in Meta I, adopting an elongated conformation similar to that seen in the recent activelike crystal structures. Surprisingly, this elongation corresponds to both a dramatic influx of bulk water into the hydrophobic core of the protein and a concerted transition in the highly conserved Trp265(6.48) residue. In addition, enhanced ligand flexibility upon light activation provides an explanation for the different retinal orientations observed in X-ray crystal structures of active rhodopsin.
视紫红质,哺乳动物的暗光受体,是研究最为透彻的 G 蛋白偶联受体之一,是一类具有重要药物价值的膜蛋白,由于最近获得了结构信息,受到了广泛关注。然而,视紫红质的激活机制尚未完全阐明。在这里,我们使用微秒级别的全原子分子动力学模拟,并通过固态 (2)H 核磁共振波谱学进行验证,来理解黑暗状态和变视紫红质 I(Meta I)状态之间的转变。我们对这些模拟的分析揭示了两种状态下配体灵活性的显著差异。视黄醛在 Meta I 中更加动态,采用类似于最近的激活态晶体结构中所见的伸长构象。令人惊讶的是,这种伸长对应于大量的水涌入蛋白质的疏水区和高度保守的色氨酸 265(6.48)残基的协同转变。此外,光激活时配体灵活性的增强为 X 射线晶体结构中观察到的活性视紫红质的不同视黄醛取向提供了解释。