Suppr超能文献

视网膜配体的流动性解释了内部水合作用,并协调了活跃视蛋白的结构。

Retinal ligand mobility explains internal hydration and reconciles active rhodopsin structures.

机构信息

Department of Biochemistry and Biophysics, University of Rochester Medical Center , Rochester, New York 14642, United States.

出版信息

Biochemistry. 2014 Jan 21;53(2):376-85. doi: 10.1021/bi4013947. Epub 2014 Jan 8.

Abstract

Rhodopsin, the mammalian dim-light receptor, is one of the best-characterized G-protein-coupled receptors, a pharmaceutically important class of membrane proteins that has garnered a great deal of attention because of the recent availability of structural information. Yet the mechanism of rhodopsin activation is not fully understood. Here, we use microsecond-scale all-atom molecular dynamics simulations, validated by solid-state (2)H nuclear magnetic resonance spectroscopy, to understand the transition between the dark and metarhodopsin I (Meta I) states. Our analysis of these simulations reveals striking differences in ligand flexibility between the two states. Retinal is much more dynamic in Meta I, adopting an elongated conformation similar to that seen in the recent activelike crystal structures. Surprisingly, this elongation corresponds to both a dramatic influx of bulk water into the hydrophobic core of the protein and a concerted transition in the highly conserved Trp265(6.48) residue. In addition, enhanced ligand flexibility upon light activation provides an explanation for the different retinal orientations observed in X-ray crystal structures of active rhodopsin.

摘要

视紫红质,哺乳动物的暗光受体,是研究最为透彻的 G 蛋白偶联受体之一,是一类具有重要药物价值的膜蛋白,由于最近获得了结构信息,受到了广泛关注。然而,视紫红质的激活机制尚未完全阐明。在这里,我们使用微秒级别的全原子分子动力学模拟,并通过固态 (2)H 核磁共振波谱学进行验证,来理解黑暗状态和变视紫红质 I(Meta I)状态之间的转变。我们对这些模拟的分析揭示了两种状态下配体灵活性的显著差异。视黄醛在 Meta I 中更加动态,采用类似于最近的激活态晶体结构中所见的伸长构象。令人惊讶的是,这种伸长对应于大量的水涌入蛋白质的疏水区和高度保守的色氨酸 265(6.48)残基的协同转变。此外,光激活时配体灵活性的增强为 X 射线晶体结构中观察到的活性视紫红质的不同视黄醛取向提供了解释。

相似文献

9
Relevance of rhodopsin studies for GPCR activation.视紫红质研究对G蛋白偶联受体激活的相关性。
Biochim Biophys Acta. 2014 May;1837(5):674-82. doi: 10.1016/j.bbabio.2013.09.002. Epub 2013 Sep 13.

引用本文的文献

2
Hidden water's influence on rhodopsin activation.隐匿水对视紫红质激活的影响。
Biophys J. 2024 Dec 17;123(24):4167-4179. doi: 10.1016/j.bpj.2024.11.012. Epub 2024 Nov 16.
3
Dissecting the Thermodynamics of ATP Binding to GroEL One Nucleotide at a Time.一次剖析一个核苷酸的ATP与GroEL结合的热力学。
ACS Cent Sci. 2023 Feb 20;9(3):466-475. doi: 10.1021/acscentsci.2c01065. eCollection 2023 Mar 22.
4
Hydration-mediated G-protein-coupled receptor activation.水合作用介导的 G 蛋白偶联受体激活。
Proc Natl Acad Sci U S A. 2022 May 24;119(21):e2117349119. doi: 10.1073/pnas.2117349119. Epub 2022 May 18.

本文引用的文献

1
4
A new era of GPCR structural and chemical biology.GPCR 结构与化学生物学的新纪元。
Nat Chem Biol. 2012 Jul 18;8(8):670-3. doi: 10.1038/nchembio.1025.
9
Role of bulk water in hydrolysis of the rhodopsin chromophore.视紫红质生色团水解中 bulk water 的作用。
J Biol Chem. 2011 May 27;286(21):18930-7. doi: 10.1074/jbc.M111.234583. Epub 2011 Apr 1.
10
Crystal structure of metarhodopsin II.视紫红质 II 的晶体结构。
Nature. 2011 Mar 31;471(7340):651-5. doi: 10.1038/nature09789. Epub 2011 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验