Poitras M F, Koh D W, Yu S-W, Andrabi S A, Mandir A S, Poirier G G, Dawson V L, Dawson T M
Institute for Cell Engineering, Johns Hopkins University School of Medicine, Broadway Research Building, 733 North Broadway, Suite 731, Baltimore, MD 21205, USA.
Neuroscience. 2007 Aug 10;148(1):198-211. doi: 10.1016/j.neuroscience.2007.04.062. Epub 2007 Jul 19.
Poly(ADP-ribose) polymerases (PARPs) are members of a family of enzymes that utilize nicotinamide adenine dinucleotide (NAD(+)) as substrate to form large ADP-ribose polymers (PAR) in the nucleus. PAR has a very short half-life due to its rapid degradation by poly(ADP-ribose) glycohydrolase (PARG). PARP-1 mediates acute neuronal cell death induced by a variety of insults including cerebral ischemia, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism, and CNS trauma. While PARP-1 is localized to the nucleus, PARG resides in both the nucleus and cytoplasm. Surprisingly, there appears to be only one gene encoding PARG activity, which has been characterized in vitro to generate different splice variants, in contrast to the growing family of PARPs. Little is known regarding the spatial and functional relationships of PARG and PARP-1. Here we evaluate PARG expression in the brain and its cellular and subcellular distribution in relation to PARP-1. Anti-PARG (alpha-PARG) antibodies raised in rabbits using a purified 30 kDa C-terminal fragment of murine PARG recognize a single band at 111 kDa in the brain. Western blot analysis also shows that PARG and PARP-1 are evenly distributed throughout the brain. Immunohistochemical studies using alpha-PARG antibodies reveal punctate cytosolic staining, whereas anti-PARP-1 (alpha-PARP-1) antibodies demonstrate nuclear staining. PARG is enriched in the mitochondrial fraction together with manganese superoxide dismutase (MnSOD) and cytochrome C (Cyt C) following whole brain subcellular fractionation and Western blot analysis. Confocal microscopy confirms the co-localization of PARG and Cyt C. Finally, PARG translocation to the nucleus is triggered by NMDA-induced PARP-1 activation. Therefore, the subcellular segregation of PARG in the mitochondria and PARP-1 in the nucleus suggests that PARG translocation is necessary for their functional interaction. This translocation is PARP-1 dependent, further demonstrating a functional interaction of PARP-1 and PARG in the brain.
聚(ADP - 核糖)聚合酶(PARP)是一类酶家族的成员,这些酶利用烟酰胺腺嘌呤二核苷酸(NAD⁺)作为底物在细胞核中形成大的ADP - 核糖聚合物(PAR)。由于聚(ADP - 核糖)糖苷水解酶(PARG)的快速降解,PAR的半衰期很短。PARP - 1介导由多种损伤诱导的急性神经元细胞死亡,这些损伤包括脑缺血、1 - 甲基 - 4 - 苯基 - 1,2,3,6 - 四氢吡啶诱导的帕金森症和中枢神经系统创伤。虽然PARP - 1定位于细胞核,但PARG存在于细胞核和细胞质中。令人惊讶的是,似乎只有一个编码PARG活性的基因,与不断增加的PARP家族相比,该基因在体外已被表征为产生不同的剪接变体。关于PARG和PARP - 1的空间和功能关系知之甚少。在这里,我们评估PARG在脑中的表达及其与PARP - 1相关的细胞和亚细胞分布。使用纯化的30 kDa小鼠PARG C末端片段在兔中产生的抗PARG(α - PARG)抗体在脑中识别出一条111 kDa的单带。蛋白质印迹分析还表明PARG和PARP - 1在整个脑中均匀分布。使用α - PARG抗体的免疫组织化学研究显示点状胞质染色,而抗PARP - 1(α - PARP - 1)抗体显示核染色。在全脑亚细胞分级分离和蛋白质印迹分析后,PARG与锰超氧化物歧化酶(MnSOD)和细胞色素C(Cyt C)一起富集在线粒体部分。共聚焦显微镜证实了PARG和Cyt C的共定位。最后,NMDA诱导的PARP - 1激活触发PARG向细胞核的转位。因此,PARG在线粒体中的亚细胞分隔和PARP - 1在细胞核中的分隔表明PARG转位对于它们的功能相互作用是必要的。这种转位是PARP - 1依赖性的,进一步证明了PARP - 1和PARG在脑中的功能相互作用。