Suppr超能文献

CD38基因敲除小鼠尽管存在高水平的多聚ADP核糖基化,但对缺血性脑损伤仍表现出显著的保护作用。

CD38 Knockout Mice Show Significant Protection Against Ischemic Brain Damage Despite High Level Poly-ADP-Ribosylation.

作者信息

Long Aaron, Park Ji H, Klimova Nina, Fowler Carol, Loane David J, Kristian Tibor

机构信息

Veterans Affairs Maryland Health Care System, 10 North Greene Street, Baltimore, MD, 21201, USA.

Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research, School of Medicine, University of Maryland, 685 West Baltimore Street, MSTF 534, Baltimore, MD, 21201, USA.

出版信息

Neurochem Res. 2017 Jan;42(1):283-293. doi: 10.1007/s11064-016-2031-9. Epub 2016 Aug 12.

Abstract

Several enzymes in cellular bioenergetics metabolism require NAD as an essential cofactor for their activity. NAD depletion following ischemic insult can result in cell death and has been associated with over-activation of poly-ADP-ribose polymerase PARP1 as well as an increase in NAD consuming enzyme CD38. CD38 is an NAD glycohydrolase that plays an important role in inflammatory responses. To determine the contribution of CD38 activity to the mechanisms of post-ischemic brain damage we subjected CD38 knockout (CD38KO) mice and wild-type (WT) mice to transient forebrain ischemia. The CD38KO mice showed a significant amelioration in both histological and neurologic outcome following ischemic insult. Decrease of hippocampal NAD levels detected during reperfusion in WT mice was only transient in CD38KO animals, suggesting that CD38 contributes to post-ischemic NAD catabolism. Surprisingly, pre-ischemic poly-ADP-ribose (PAR) levels were dramatically higher in CD38KO animals compared to WT animals and exhibited reduction post-ischemia in contrast to the increased levels in WT animals. The high PAR levels in CD38 mice were due to reduced expression levels of poly-ADP-ribose glycohydrolase (PARG). Thus, the absence of CD38 activity can not only directly affect inflammatory response, but also result in unpredicted alterations in the expression levels of enzymes participating in NAD metabolism. Although the CD38KO mice showed significant protection against ischemic brain injury, the changes in enzyme activity related to NAD metabolism makes the determination of the role of CD38 in mechanisms of ischemic brain damage more complex.

摘要

细胞生物能量代谢中的几种酶需要NAD作为其活性的必需辅因子。缺血性损伤后NAD耗竭可导致细胞死亡,并与聚ADP - 核糖聚合酶PARP1的过度激活以及NAD消耗酶CD38的增加有关。CD38是一种NAD糖水解酶,在炎症反应中起重要作用。为了确定CD38活性对缺血性脑损伤机制的作用,我们对CD38基因敲除(CD38KO)小鼠和野生型(WT)小鼠进行了短暂性前脑缺血。CD38KO小鼠在缺血性损伤后的组织学和神经学结果方面均表现出显著改善。WT小鼠再灌注期间检测到的海马NAD水平降低在CD38KO动物中只是短暂的,这表明CD38参与了缺血后NAD的分解代谢。令人惊讶的是,与WT动物相比,CD38KO动物缺血前的聚ADP - 核糖(PAR)水平显著更高,并且与WT动物中PAR水平升高相反,缺血后PAR水平降低。CD38小鼠中PAR水平高是由于聚ADP - 核糖糖水解酶(PARG)的表达水平降低。因此,缺乏CD38活性不仅可以直接影响炎症反应,还会导致参与NAD代谢的酶表达水平发生意外改变。尽管CD38KO小鼠对缺血性脑损伤表现出显著的保护作用,但与NAD代谢相关的酶活性变化使得确定CD38在缺血性脑损伤机制中的作用更加复杂。

相似文献

1
CD38 Knockout Mice Show Significant Protection Against Ischemic Brain Damage Despite High Level Poly-ADP-Ribosylation.
Neurochem Res. 2017 Jan;42(1):283-293. doi: 10.1007/s11064-016-2031-9. Epub 2016 Aug 12.
3
Activation of cell death mediated by apoptosis-inducing factor due to the absence of poly(ADP-ribose) glycohydrolase.
Biochemistry. 2011 Apr 12;50(14):2850-9. doi: 10.1021/bi101829r. Epub 2011 Mar 21.
5
Poly(ADP-ribose) glycohydrolase mediates oxidative and excitotoxic neuronal death.
Proc Natl Acad Sci U S A. 2001 Oct 9;98(21):12227-32. doi: 10.1073/pnas.211202598.
6
CD38 controls ADP-ribosyltransferase-2-catalyzed ADP-ribosylation of T cell surface proteins.
J Immunol. 2005 Mar 15;174(6):3298-305. doi: 10.4049/jimmunol.174.6.3298.
8
Identification of ADP-ribosylation sites of CD38 mutants by precursor ion scanning mass spectrometry.
Anal Biochem. 2013 Feb 15;433(2):218-26. doi: 10.1016/j.ab.2012.10.029. Epub 2012 Oct 31.
9
Poly(ADP-ribose) metabolism in brain and its role in ischemia pathology.
Mol Neurobiol. 2010 Jun;41(2-3):187-96. doi: 10.1007/s12035-010-8124-6. Epub 2010 Apr 23.

引用本文的文献

1
Astroglial CD38 impairs hippocampal synaptic plasticity after global cerebral ischemia.
Front Stroke. 2024;3. doi: 10.3389/fstro.2024.1423887. Epub 2024 Aug 14.
3
Tryptophan metabolism and ischemic stroke: An intricate balance.
Neural Regen Res. 2026 Feb 1;21(2):466-477. doi: 10.4103/NRR.NRR-D-24-00777. Epub 2025 Jan 13.
4
Neuroprotection by Mitochondrial NAD Against Glutamate-Induced Excitotoxicity.
Cells. 2025 Apr 12;14(8):582. doi: 10.3390/cells14080582.
6
Sexual Dimorphism of Ethanol-Induced Mitochondrial Dynamics in Purkinje Cells.
Int J Mol Sci. 2024 Dec 22;25(24):13714. doi: 10.3390/ijms252413714.
9
Therapeutic Effect of Nicotinamide Mononucleotide for Hypoxic-Ischemic Brain Injury in Neonatal Mice.
ASN Neuro. 2023 Jan-Dec;15:17590914231198983. doi: 10.1177/17590914231198983.
10
Targeting NAD Metabolism for the Therapy of Age-Related Neurodegenerative Diseases.
Neurosci Bull. 2024 Feb;40(2):218-240. doi: 10.1007/s12264-023-01072-3. Epub 2023 May 31.

本文引用的文献

2
Mitochondrial dynamics: cell-type and hippocampal region specific changes following global cerebral ischemia.
J Bioenerg Biomembr. 2015 Apr;47(1-2):13-31. doi: 10.1007/s10863-014-9575-7. Epub 2014 Sep 24.
3
Wallerian degeneration: an emerging axon death pathway linking injury and disease.
Nat Rev Neurosci. 2014 Jun;15(6):394-409. doi: 10.1038/nrn3680.
5
Mitochondrial dysfunction induced by nuclear poly(ADP-ribose) polymerase-1: a treatable cause of cell death in stroke.
Transl Stroke Res. 2014 Feb;5(1):136-44. doi: 10.1007/s12975-013-0283-0. Epub 2013 Sep 7.
6
Mitochondrial dysfunction and NAD(+) metabolism alterations in the pathophysiology of acute brain injury.
Transl Stroke Res. 2013 Dec;4(6):618-34. doi: 10.1007/s12975-013-0278-x. Epub 2013 Aug 10.
7
Simple model of forebrain ischemia in mouse.
J Neurosci Methods. 2012 Mar 15;204(2):254-61. doi: 10.1016/j.jneumeth.2011.11.022. Epub 2011 Nov 28.
8
CD38 exacerbates focal cytokine production, postischemic inflammation and brain injury after focal cerebral ischemia.
PLoS One. 2011;6(5):e19046. doi: 10.1371/journal.pone.0019046. Epub 2011 May 13.
10
Visualization and quantification of NAD(H) in brain sections by a novel histo-enzymatic nitrotetrazolium blue staining technique.
Brain Res. 2010 Feb 26;1316:112-9. doi: 10.1016/j.brainres.2009.12.042. Epub 2009 Dec 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验