Suppr超能文献

使用指数随机图模型探索生物网络结构。

Exploring biological network structure using exponential random graph models.

作者信息

Saul Zachary M, Filkov Vladimir

机构信息

Department of Computer Science, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA.

出版信息

Bioinformatics. 2007 Oct 1;23(19):2604-11. doi: 10.1093/bioinformatics/btm370. Epub 2007 Jul 20.

Abstract

MOTIVATION

The functioning of biological networks depends in large part on their complex underlying structure. When studying their systemic nature many modeling approaches focus on identifying simple, but prominent, structural components, as such components are easier to understand, and, once identified, can be used as building blocks to succinctly describe the network.

RESULTS

In recent social network studies, exponential random graph models have been used extensively to model global social network structure as a function of their 'local features'. Starting from those studies, we describe the exponential random graph models and demonstrate their utility in modeling the architecture of biological networks as a function of the prominence of local features. We argue that the flexibility, in terms of the number of available local feature choices, and scalability, in terms of the network sizes, make this approach ideal for statistical modeling of biological networks. We illustrate the modeling on both genetic and metabolic networks and provide a novel way of classifying biological networks based on the prevalence of their local features.

摘要

动机

生物网络的功能在很大程度上取决于其复杂的底层结构。在研究其系统性质时,许多建模方法侧重于识别简单但突出的结构成分,因为此类成分更易于理解,并且一旦识别出来,就可以用作构建块来简洁地描述网络。

结果

在最近的社交网络研究中,指数随机图模型已被广泛用于将全球社交网络结构建模为其“局部特征”的函数。从这些研究出发,我们描述了指数随机图模型,并展示了它们在将生物网络架构建模为局部特征突出程度的函数方面的效用。我们认为,就可用局部特征选择的数量而言的灵活性以及就网络规模而言的可扩展性,使这种方法成为生物网络统计建模的理想选择。我们在遗传网络和代谢网络上都展示了建模,并基于局部特征的普遍性提供了一种对生物网络进行分类的新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验