Suppr超能文献

胶体硅纳米晶体中的多激子产生

Multiple exciton generation in colloidal silicon nanocrystals.

作者信息

Beard Matthew C, Knutsen Kelly P, Yu Pingrong, Luther Joseph M, Song Qing, Metzger Wyatt K, Ellingson Randy J, Nozik Arthur J

机构信息

National Renewable Energy Laboratory, Golden, Colorado 80401, USA. matt_

出版信息

Nano Lett. 2007 Aug;7(8):2506-12. doi: 10.1021/nl071486l. Epub 2007 Jul 24.

Abstract

Multiple exciton generation (MEG) is a process whereby multiple electron-hole pairs, or excitons, are produced upon absorption of a single photon in semiconductor nanocrystals (NCs) and represents a promising route to increased solar conversion efficiencies in single-junction photovoltaic cells. We report for the first time MEG yields in colloidal Si NCs using ultrafast transient absorption spectroscopy. We find the threshold photon energy for MEG in 9.5 nm diameter Si NCs (effective band gap identical with Eg = 1.20 eV) to be 2.4 +/- 0.1Eg and find an exciton-production quantum yield of 2.6 +/- 0.2 excitons per absorbed photon at 3.4Eg. While MEG has been previously reported in direct-gap semiconductor NCs of PbSe, PbS, PbTe, CdSe, and InAs, this represents the first report of MEG within indirect-gap semiconductor NCs. Furthermore, MEG is found in relatively large Si NCs (diameter equal to about twice the Bohr radius) such that the confinement energy is not large enough to produce a large blue-shift of the band gap (only 80 meV), but the Coulomb interaction is sufficiently enhanced to produce efficient MEG. Our findings are of particular importance because Si dominates the photovoltaic solar cell industry, presents no problems regarding abundance and accessibility within the Earth's crust, and poses no significant environmental problems regarding toxicity.

摘要

多激子产生(MEG)是一个过程,即半导体纳米晶体(NCs)在吸收单个光子时会产生多个电子 - 空穴对或激子,这是提高单结光伏电池太阳能转换效率的一条有前景的途径。我们首次使用超快瞬态吸收光谱法报道了胶体硅纳米晶体中的MEG产率。我们发现直径为9.5 nm的硅纳米晶体(有效带隙与Eg = 1.20 eV相同)中MEG的阈值光子能量为2.4 +/- 0.1Eg,并发现在3.4Eg时每吸收一个光子的激子产生量子产率为2.6 +/- 0.2个激子。虽然之前已在PbSe、PbS、PbTe、CdSe和InAs的直接带隙半导体纳米晶体中报道过MEG,但这是间接带隙半导体纳米晶体中MEG的首次报道。此外,在相对较大的硅纳米晶体(直径约为玻尔半径的两倍)中发现了MEG,使得限制能量不足以产生带隙的大蓝移(仅80 meV),但库仑相互作用得到充分增强以产生高效的MEG。我们的发现尤为重要,因为硅在光伏太阳能电池行业中占主导地位,在地壳中不存在丰度和可获取性方面的问题,并且在毒性方面也不存在重大环境问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验