National Renewable Energy Laboratory , Golden, Colorado 80401, United States.
Acc Chem Res. 2013 Jun 18;46(6):1252-60. doi: 10.1021/ar3001958. Epub 2012 Oct 31.
Improving the primary photoconversion process in a photovoltaiccell by utilizing the excess energy that is otherwise lost as heat can lead to an increase in the overall power conversion efficiency (PCE). Semiconductor nanocrystals (NCs) with at least one dimension small enough to produce quantum confinement effects provide new ways of controlling energy flow not achievable in thin film or bulk semiconductors. Researchers have developed various strategies to incorporate these novel structures into suitable solar conversion systems. Some of these methods could increase the PCE past the Shockley-Queisser (SQ) limit of ∼33%, making them viable "third generation photovoltaic" (TGPV) cell architectures. Surpassing the SQ limit for single junction solar cells presents both a scientific and a technological challenge, and the use of semiconductor NCs to enhance the primary photoconversion process offers a promising potential solution. The NCs are synthesized via solution phase chemical reactions producing stable colloidal solutions, where the reaction conditions can be modified to produce a variety of shapes, compositions, and structures. The confinement of the semiconductor NC in one dimension produces quantum films, wells, or discs. Two-dimensional confinement leads to quantum wires or rods (QRs), and quantum dots (QDs) are three-dimensionally confined NCs. The process of multiple exciton generation (MEG) converts a high-energy photon into multiple electron-hole pairs. Although many studies have demonstrated that MEG is enhanced in QDs compared with bulk semiconductors, these studies have either used ultrafast spectroscopy to measure the photon-to-exciton quantum yields (QYs) or theoretical calculations. Implementing MEG in a working solar cell has been an ongoing challenge. In this Account, we discuss the status of MEG research and strategies towards implementing MEG in working solar cells. Recently we showed an external quantum efficiency for photocurrent of greater than 100% (reaching 114%) at ∼4Eg in a PbSe QD solar cell. The internal quantum efficiency reached 130%. These results compare favorably with ultrafast transient spectroscopic measurements. Thus, we have shown that one of the tenets of the SQ limit, that photons only produce one electron-hole pair at the electrodes of a solar cell, can be overcome. Further challenges include increasing the MEG efficiency and improving the QD device structure and operation.
通过利用 otherwise lost as heat 这部分本来会以热能形式耗散的多余能量,提高光伏电池的初级光转化过程,能够提升整体光电转换效率(PCE)。具有至少一维尺寸小到足以产生量子限制效应的半导体纳米晶体(NC)为控制能量流提供了新途径,这在薄膜或体半导体中是无法实现的。研究人员已经开发了各种策略,将这些新颖结构纳入到合适的太阳能转换系统中。其中一些方法可以将 PCE 提高到超过 Shockley-Queisser(SQ)极限的 33%,使它们成为可行的“第三代光伏”(TGPV)电池架构。要使单结太阳能电池超过 SQ 极限,既具有科学挑战性,也具有技术挑战性,而利用半导体 NC 来增强初级光转化过程提供了一个很有前景的潜在解决方案。NC 通过溶液相化学反应合成,生成稳定的胶体溶液,在这种反应条件下可以进行修改,以产生各种形状、组成和结构。半导体 NC 在一维上的限制产生量子膜、阱或盘。二维限制导致量子线或棒(QR),而量子点(QD)则是在三维上受限的 NC。多激子产生(MEG)的过程将高能光子转换为多个电子-空穴对。尽管许多研究表明与体半导体相比,MEG 在 QD 中得到了增强,但这些研究要么使用超快光谱测量光子-激子量子产率(QY),要么使用理论计算。在工作太阳能电池中实现 MEG 一直是一个持续的挑战。在本报告中,我们讨论了 MEG 研究的现状和在工作太阳能电池中实现 MEG 的策略。最近,我们在 PbSe QD 太阳能电池中证明了在约 4Eg 时光电流的外量子效率大于 100%(达到 114%)。内部量子效率达到 130%。这些结果与超快瞬态光谱测量结果相当。因此,我们已经证明了 SQ 极限的一个原则,即光子在太阳能电池的电极处仅产生一对电子-空穴对,可以被克服。进一步的挑战包括提高 MEG 效率和改进 QD 器件结构和操作。