Dayhoff Judith E
Complexity Research Solutions, Silver Spring, MD 20906, USA.
Neural Comput. 2007 Sep;19(9):2433-67. doi: 10.1162/neco.2007.19.9.2433.
We demonstrate a model in which synchronously firing ensembles of neurons are networked to produce computational results. Each ensemble is a group of biological integrate-and-fire spiking neurons, with probabilistic interconnections between groups. An analogy is drawn in which each individual processing unit of an artificial neural network corresponds to a neuronal group in a biological model. The activation value of a unit in the artificial neural network corresponds to the fraction of active neurons, synchronously firing, in a biological neuronal group. Weights of the artificial neural network correspond to the product of the interconnection density between groups, the group size of the presynaptic group, and the postsynaptic potential heights in the synchronous group model. All three of these parameters can modulate connection strengths between neuronal groups in the synchronous group models. We give an example of nonlinear classification (XOR) and a function approximation example in which the capability of the artificial neural network can be captured by a neural network model with biological integrate-and-fire neurons configured as a network of synchronously firing ensembles of such neurons. We point out that the general function approximation capability proven for feedforward artificial neural networks appears to be approximated by networks of neuronal groups that fire in synchrony, where the groups comprise integrate-and-fire neurons. We discuss the advantages of this type of model for biological systems, its possible learning mechanisms, and the associated timing relationships.
我们展示了一个模型,其中同步放电的神经元集合相互连接以产生计算结果。每个集合都是一组生物积分发放脉冲神经元,组与组之间存在概率性连接。文中进行了一个类比,即人工神经网络的每个单独处理单元对应于生物模型中的一个神经元组。人工神经网络中一个单元的激活值对应于生物神经元组中同步放电的活跃神经元的比例。人工神经网络的权重对应于同步组模型中组间连接密度、突触前组的组大小以及同步组中突触后电位高度的乘积。这三个参数均可调节同步组模型中神经元组之间的连接强度。我们给出了一个非线性分类(异或)示例和一个函数逼近示例,其中人工神经网络的能力可由一个具有生物积分发放神经元的神经网络模型来体现,这些神经元被配置为这样的同步放电集合的网络。我们指出,前馈人工神经网络已被证明的一般函数逼近能力似乎可由同步放电的神经元组网络来近似,其中这些组由积分发放神经元组成。我们讨论了这种类型的模型对生物系统的优势、其可能的学习机制以及相关的时间关系。