Fukae M, Yamamoto R, Karakida T, Shimoda S, Tanabe T
Department of Biochemistry and Anatomy, Tsurumi University, Yokhama, Japan.
J Dent Res. 2007 Aug;86(8):758-63. doi: 10.1177/154405910708600814.
Even during the secretory stage of amelogenesis, enamel crystals thicken as amelogenins (the major protein component) decrease. To explain this phenomenon, we propose a model for amelogenin structure and function based upon the hypothesis that amelogenin forms micelles. Solubility and hydrophobicity analyses suggest that all but the hydrophilic amelogenin C-terminal regions aggregate via hydrophobic bonds to form a micelle core. Amelogenin micelles may form super-assemblies via their C-termini (KTKREEVD), which contain complementary positive (KTKR) and negative (EEVD) elements. Disassembly of the micelles through controlled proteolysis provides space for crystal growth. Initial cleavage (by enamelysin) removes the surface-accessible amelogenin C-terminus, exposing the middle portion to cleavage (by EMSP1). As a result, the 13-kDa amelogenin, a rod-shaped domain based upon ultrafiltration and transmission electron microscopy studies, is released. This model explains how amelogenin is able to 'space' and support the ribbon-like crystals and continuously yield space as the crystals thicken, until they are sufficiently mature to support themselves.
即使在釉质形成的分泌阶段,随着釉原蛋白(主要蛋白质成分)减少,釉质晶体也会变厚。为了解释这一现象,我们基于釉原蛋白形成微团的假说,提出了一个釉原蛋白结构与功能的模型。溶解度和疏水性分析表明,除了亲水性的釉原蛋白C末端区域外,其他区域通过疏水键聚集形成微团核心。釉原蛋白微团可能通过其C末端(KTKREEVD)形成超组装体,该区域包含互补的正性(KTKR)和负性(EEVD)元件。通过可控的蛋白水解作用使微团解体,为晶体生长提供空间。最初的切割(由釉质溶解素进行)去除了表面可及的釉原蛋白C末端,使中间部分暴露于切割(由EMSP1进行)。结果,基于超滤和透射电子显微镜研究的一种杆状结构域的13 kDa釉原蛋白被释放出来。该模型解释了釉原蛋白如何能够“分隔”并支撑带状晶体,以及随着晶体变厚如何持续产生空间,直到它们足够成熟能够自我支撑。