Suppr超能文献

使用神经网络方法通过磁共振成像(MRI)估计组织中的造影剂浓度。

MRI estimation of contrast agent concentration in tissue using a neural network approach.

作者信息

Bagher-Ebadian Hassan, Nagaraja Tavarekere N, Paudyal Ramesh, Whitton Polly, Panda Swayamprava, Fenstermacher Joseph D, Ewing James R

机构信息

Department of Neurology, Henry Ford Health System, Detroit, Michigan 48202, USA.

出版信息

Magn Reson Med. 2007 Aug;58(2):290-7. doi: 10.1002/mrm.21332.

Abstract

Using an MRI T(1) by multiple readout pulses (TOMROP) image set, an adaptive neural network (ANN) was trained to directly estimate the concentration of a contrast agent (CA), gadolinium-bovine serum albumin (Gd-BSA), in tissue. In nine rats implanted with a 9L cerebral tumor, MRI acquisition of TOMROP inversion-recovery data was followed by quantitative autoradiography (QAR) using radioiodinated serum albumin (RISA). QAR autoradiograms were used as a training set for the ANN. Precontrast and 25 min postcontrast TOMROP image sets were shown to the ANN in the form of a physical feature set related to 24 inversion-recovery images; QAR autoradiograms at 30 min after injection of RISA were taken as the training standard for the network. After training and optimization, the ANN produced a map of Gd-BSA concentration [g-moles/liter]. The prediction by the ANN of CA concentration at 25 min after injection was well correlated (r = 0.82, P < 0.0001) with the corresponding autoradiogram's measure of CA concentration.

摘要

利用多读出脉冲磁共振成像T(1)(TOMROP)图像集,训练了一个自适应神经网络(ANN)来直接估计组织中造影剂(CA)钆-牛血清白蛋白(Gd-BSA)的浓度。在9只植入9L脑肿瘤的大鼠中,在进行TOMROP反转恢复数据的磁共振成像采集后,使用放射性碘化血清白蛋白(RISA)进行定量放射自显影(QAR)。QAR放射自显影片用作ANN的训练集。将注射造影剂前和注射后25分钟的TOMROP图像集以与24张反转恢复图像相关的物理特征集的形式展示给ANN;注射RISA后30分钟的QAR放射自显影片作为网络的训练标准。经过训练和优化后,ANN生成了Gd-BSA浓度[克分子/升]图。ANN对注射后25分钟时CA浓度的预测与相应放射自显影片上CA浓度的测量值具有良好的相关性(r = 0.82,P < 0.0001)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验