Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America.
PLoS One. 2011;6(8):e22626. doi: 10.1371/journal.pone.0022626. Epub 2011 Aug 10.
In hemispheric ischemic stroke, the final size of the ischemic lesion is the most important correlate of clinical functional outcome. Using a set of acute-phase MR images (Diffusion-weighted--DWI, T(1)-weighted--T1WI, T(2)-weighted--T2WI, and proton density weighted--PDWI) for inputs, and the chronic T2WI at 3 months as an outcome measure, an Artificial Neural Network (ANN) was trained to predict the 3-month outcome in the form of a voxel-by-voxel forecast of the chronic T2WI. The ANN was trained and tested using 12 subjects (with 83 slices and 140218 voxels) using a leave-one-out cross-validation method with calculation of the Area Under the Receiver Operator Characteristic Curve (AUROC) for training, testing and optimization of the ANN. After training and optimization, the ANN produced maps of predicted outcome that were well correlated (r = 0.80, p<0.0001) with the T2WI at 3 months for all 12 patients. This result implies that the trained ANN can provide an estimate of 3-month ischemic lesion on T2WI in a stable and accurate manner (AUROC = 0.89).
在半球性缺血性脑卒中,缺血性损伤的最终大小是与临床功能结果最相关的因素。利用一组急性期磁共振图像(弥散加权成像-DWI、T1 加权成像-T1WI、T2 加权成像-T2WI 和质子密度加权成像-PDWI)作为输入,以慢性期 3 个月 T2WI 作为结果测量指标,采用人工神经网络(ANN)对慢性 T2WI 进行逐体素预测,从而对 3 个月的结果进行预测。采用留一法交叉验证方法,对 12 名受试者(83 个切片,140218 个体素)进行训练和测试,计算受试者工作特征曲线(ROC)下面积(AUROC),以对 ANN 进行训练、测试和优化。经过训练和优化后,ANN 生成的预测结果图与所有 12 名患者的 3 个月 T2WI 具有良好的相关性(r=0.80,p<0.0001)。这一结果表明,经过训练的 ANN 可以以稳定、准确的方式提供 T2WI 上 3 个月缺血性损伤的估计值(AUROC=0.89)。